XXXV
Società Chimica Italiana

Dipartimento di Chimica e Farmacia
Università di Sassari
Istituto di Chimica Biomolecolare del CNR di Sassari

Comitato Scientifico:
Prof. Paolo Scrimin
Prof. Raffaele Riccio
Prof. Roberto Ballini
Prof. Valeria Conte
Prof. Marco D’Ischia
Prof. Gianluca Farinola
Prof. Francesco Sannicolo

Conferenze Plenarie:
Dott. Catia Bastioli, Matrìca/Novamont
Dott. Walter Cabri, Indena
Prof. Cinzia Chiappe, Uni Pisa
Prof. Antonella Dalla Cort, Uni Roma1
Prof. Bartolo Gabriele, Uni Calabria
Prof. Cesare Gennari, Uni Milano
Prof. Andrea Mazzanti, Uni Bologna
Dott. Alessandro Mordini, CNR Firenze
Prof. Carmen Nájera, Uni Alicante
Dott. Vincenzo Palermo, ISOF CNR Bologna
Dott. Stefano Pronti, Uni Pavia
Dott. Haymo Ross, EurOCWiley
Prof. Claudio Trombini, Uni Bologna
Dott. Antonio Zanotti-Gerosa, Johnson Matthey

Comitato Organizzatore:
Prof. Ugo Azzena
Dott. Massimo Carraro
Dott.ssa Giovanna Delogu
Dott.ssa Lidia De Luca
Dott. Davide Fabbris
Dott. Mauro Marchetti
Dott.ssa Luisa Pisano
Dott. Andrea Porcheddu
Dott.ssa Gloria Rassu
Dott. Pietro Spanu
Dott. Pietro Allegretti

Sassari, 9-13 Settembre 2013
Campus Universitario Via Vienna
Targeted Nanoparticles for the Delivery of Novel Bioactive Molecules to Pancreatic Cancer Cells

Vanna Sanna, Nicolino Pala, Salvatore Nurra, Salvatore Marceddu, Divya Pathani, Nouri Neamati, Mario Sechi

Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Italy; Porto Conte Ricerche, Alghero, Italy; Istituto di Scienze delle Produzioni Alimentari (ISPA), CNR, Sezione di Sassari, Italy; Dept. Pharmacol. & Pharmaceutical Sciences, University of Southern California, Los Angeles, USA

mario.sechi@uniss.it

Pancreatic cancer (PaCa) is a multifaceted disorder with an extremely poor prognosis. There is an urgent need to identify new and safe drugs as well as to develop novel tumor-targeted controlled release systems for effective treatment of late stage and resistant PaCa. Active targeting via the inclusion of specific ligands on the nanoparticles (NPs) is envisioned to provide a powerful therapeutic strategy (1). In this context, identification of ligand/receptor systems that enable functionalized NPs efficiently target the pancreatic ductal adenocarcinoma (PDAC) holds great promise for the development of novel approaches for treatment of PaCa. Plectin-1 (Plec-1) was recently identified as specific biomarker to detect PDAC at an early stage (2). Moreover, multivalent attachment of small molecular entities can increase specific binding affinity and high specificity for PaCa cells (3). On the other hand, altered cellular bioenergetics and oxidative stress are emerging hallmarks of many types of cancer including pancreatic cancer. Cancer cells are more prone to reactive oxygen species (ROS)-mediated cell death due to their inherent elevated basal oxidative stress as compared to normal cells. In this scenario, we have recently discovered a novel class of potential PaCa therapeutics (i.e., DFCs compounds) that exert their cytotoxic effects by modulating ROS-mediated cell signaling (4).

Herein, we present a study on the design and the development of novel DFC-encapsulated biocompatible polymeric NPs, functionalized with peptides to selectively bind to Plec-1 (PTP), or densely decorated by low molecular weight organic molecules as alternative targeting ligands (2-ABA), and evaluated a) the impact on ligand binding and b) the in vitro antiproliferative efficacy against a panel of PaCa cells.

(1) Farokhzad, O.C.; Langer, R. ACS Nano 2009, 3, 16-20