titoli, abstracts, parole chiave >>>
The Effect of the functional, basis set, and solvent in the simulation of the geometry and spectroscopic properties of VIVO2+ complexes: chemical and biological applications

Micera, Giovanni and Garribba, Eugenio (2012) The Effect of the functional, basis set, and solvent in the simulation of the geometry and spectroscopic properties of VIVO2+ complexes: chemical and biological applications. International Journal of Quantum Chemistry, Vol. 112 (12), p. 2486-2498. eISSN 1097-461X. Article.

Full text not available from this repository.

DOI: 10.1002/qua.23237

Abstract

The geometry of 32 VIVO2+ complexes with different donor set, electric charge, geometry, arrangement of the ligands with respect to the V=O bond and type of ligand was calculated by density functional theory methods. 32 V=O, 45 V-O, 16 V-OH, 40 V-N, 24 V-S, and 14 V-Cl bonds were examined. The performance of several functionals (B3LYP, B3P86, B3PW91, HCTH, TPSS, PBE0, and MPW1PW91), keeping constant the Pople triple-zeta basis sets 6-311g, was tested. The order of accuracy of the functional in the prediction of the bond distances, expressed in terms of mean of the deviation Δdd = dcalcddexptl) and absolute deviation |Δd| (|Δd| = |dcalcd − dexptl|) from the experimental values and of the corresponding standard deviations (SD(Δd) and SD(|Δd|)), is: B3P86 ~ PBE0 ~ MPW1PW91 > B3PW91 ≫ TPSS > B3LYP ≫ HCTH. In the gas phase the prediction of VO, VO, VN bond lengths is rather good, but that of VOH, VS and VCl distances is by far worse. An improvement in the optimization of VS and VCl lengths is reached by adding polarization and diffuse functions on the sulfur and chlorine atoms. Finally, a general improvement in the prediction of all the calculated bond lengths and angles is obtained by simulating the structures in the solvent where they are isolated within the framework of the polarizable continuum model. The last choice allows also to improve the prediction of structural (the deviation of a penta-coordinate geometry toward the trigonal bipyramid) and spectroscopic parameters (51V and 14N hyperfine coupling constants and 14N nuclear quadrupolar coupling constant). In most of the cases, the structures optimized in solution closely approach the experimental ones and this can be of great help in the simulations of naturally occurring vanadium compounds and metal site of V-proteins, like amavadin and the reduced form of vanadium bromoperoxidase (VBrPO).

Item Type:Article
ID Code:6906
Status:Published
Refereed:Yes
Uncontrolled Keywords:Density functional calculations, vanadium, structure elucidation, EPR spectroscopy, metalloproteins
Subjects:Area 03 - Scienze chimiche > CHIM/03 Chimica generale e inorganica
Divisions:001 Università di Sassari > 02 Centri > Centro di eccellenza interdisc. sviluppo ricerca biotecnologica e studio biodiversità della Sardegna e dell'area mediterranea
001 Università di Sassari > 01-a Nuovi Dipartimenti dal 2012 > Chimica e Farmacia
Publisher:John Wiley & Sons
eISSN:1097-461X
Copyright Holders:© 2011 Wiley Periodicals, Inc.
Deposited On:29 Dec 2011 13:41

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page