titoli, abstracts, parole chiave >>>
Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance

Peruzzi, A. and Della Croce, Ugo and Cereatti, Andrea (2011) Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance. Journal of Biomechanics, Vol. 44 (10), p. 1991-1994. ISSN 0021-9290. Article.

Full text not available from this repository.

DOI: 10.1016/j.jbiomech.2011.04.035

Abstract

In a variety of applications, inertial sensors are used to estimate spatial parameters by double integrating over time their coordinate acceleration components. In human movement applications, the drift inherent to the accelerometer signals is often reduced by exploiting the cyclical nature of gait and under the hypothesis that the velocity of the sensor is zero at some point in stance. In this study, the validity of the latter hypothesis was investigated by determining the minimum velocity of progression of selected points of the foot and shank during the stance phase of the gait cycle while walking at three different speeds on level ground. The errors affecting the accuracy of the stride length estimation resulting from assuming a zero velocity at the beginning of the integration interval were evaluated on twenty healthy subjects. Results showed that the minimum velocity of the selected points on the foot and shank increased as gait speed increased. Whereas the average minimum velocity of the foot locations was lower than 0.011 m/s, the velocity of the shank locations were up to 0.049 m/s corresponding to a percent error of the stride length equal to 3.3%. The preferable foot locations for an inertial sensor resulted to be the calcaneus and the lateral aspect of the rearfoot. In estimating the stride length, the hypothesis that the velocity of the sensor can be set to zero sometimes during stance is acceptable only if the sensor is attached to the foot.

Item Type:Article
ID Code:6232
Status:Published
Refereed:Yes
Uncontrolled Keywords:Stride length, inertial sensor, gait analysis, pedestrian navigation
Subjects:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Divisions:001 Università di Sassari > 01 Dipartimenti > Scienze biomediche
Publisher:Elsevier
ISSN:0021-9290
Copyright Holders:© 2011Elsevier Ltd.
Deposited On:08 Jul 2011 10:49

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page