titoli, abstracts, parole chiave >>>
Hyaluronan esters drive Smad gene expression and signaling enhancing cardiogenesis in mouse embryonic and human mesenchymal stem cells

Maioli, Margherita and Santaniello, Sara and Montella, Andrea Costantino Mario and Bandiera, Pasquale and Cantoni, Silvia and Cavallini, Claudia and Bianchi, Francesca and Lionetti, Vincenzo and Rizzolio, Flavio and Marchesi, Irene and Bagella, Luigi Marco and Ventura, Carlo (2010) Hyaluronan esters drive Smad gene expression and signaling enhancing cardiogenesis in mouse embryonic and human mesenchymal stem cells. PLoS One, Vol. 5 (11), e15151. ISSN 1932-6203. Article.

[img]
Preview
Full text disponibile come PDF Richiede visualizzatore di PDF come GSview, Xpdf o Adobe Acrobat Reader
Available under License Creative Commons Attribution.

1378Kb

DOI: 10.1371/journal.pone.0015151

Abstract

BACKGROUND: Development of molecules chemically modifying the expression of crucial orchestrator(s) of stem cell commitment may have significant biomedical impact. We have recently developed hyaluronan mixed esters of butyric and retinoic acids (HBR), turning cardiovascular stem cell fate into a high-yield process. The HBR mechanism(s) remain still largely undefined.

METHODOLOGY/PRINCIPAL FINDINGS: We show that in both mouse embryonic stem (ES) cells and human mesenchymal stem cells from fetal membranes of term placenta (FMhMSCs), HBR differentially affected the patterning of Smad proteins, one of the major conductors of stem cell cardiogenesis. Real-time RT-PCR and Western blot analyses revealed that in both cell types HBR enhanced gene and protein expression of Smad1,3, and 4, while down-regulating Smad7. HBR acted at the transcriptional level, as shown by nuclear run-off experiments in isolated nuclei. Immunofluorescence analysis indicated that HBR increased the fluorescent staining for Smad1,3, and 4, confirming that the transcriptional action of HBR encompassed the upregulation of the encoded Smad proteins. Chromatin immune precipitation and transcriptional analyses showed that HBR increased the transcription of the cardiogenic gene Nkx-2.5 through Smad4 binding to its own consensus Smad site. Treatment of mouse ES cells and FMhMSCs with HBR led to the concomitant overexpression of both Smad4 and α-sarcomeric actinin. Smad4 silencing by the aid of lentiviral-mediated Smad4 shRNA confirmed a dominant role of Smad4 in HBR-induced cardiogenesis.

CONCLUSIONS/SIGNIFICANCE: The use of HBR may pave the way to novel combinatorial strategies of molecular and stem cell therapy based on fine tuning of targeted Smad transciption and signaling leading to a high-throughput of cardiogenesis without the needs of gene transfer technologies.

Item Type:Article
ID Code:5382
Status:Published
Refereed:Yes
Uncontrolled Keywords:Embryonic stem (ES) cells, hyaluronan with butyric and retinoic acids (HBR), cardiogenesis
Subjects:Area 05 - Scienze biologiche > BIO/10 Biochimica
Area 05 - Scienze biologiche > BIO/16 Anatomia umana
Divisions:001 Università di Sassari > 01 Dipartimenti > Scienze biomediche
Publisher:Public Library of Science
ISSN:1932-6203
Copyright Holders:© 2010 Maioli et al.
Deposited On:28 Jan 2011 10:02

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page