titoli, abstracts, parole chiave >>>
Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate

McMahon, Colm P. and Rocchitta, Gaia Giovanna Maria and Serra, Pier Andrea and Kirwan, Sarah M. and Lowry, John P. and O'Neill, Robert D. (2006) Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Analytical Chemistry, Vol. 78 (7), p. 2352-2359. eISSN 1520-6882. Article.

Full text not available from this repository.

DOI: 10.1021/ac0518194


Biosensors for glutamate (Glu) were fabricated from Teflon-coated Pt wire (cylinders and disks), modified with the enzyme glutamate oxidase (GluOx) and electrosynthesized polymer PPD, poly(o-phenylenediamine). The polymer/enzyme layer was deposited in two configurations: enzyme before polymer (GluOx/PPD) and enzyme after polymer (PPD/GluOx). These four biosensor designs were characterized in terms of response time, limit of detection, Michaelis−Menten parameters for Glu (Jmax and KM(Glu)), sensitivity to Glu in the linear response region, and dependence on oxygen concentration, KM(O2). Analysis showed that the two polymer/enzyme configurations behaved similarly on both cylinders and disks. Although the two geometries showed different behaviors, these differences could be explained in terms of higher enzyme loading density on the disks; in many analyses, the four designs behaved like a single population with a range of GluOx loading. Enzyme loading was the key to controlling the KM(O2) values of these first generation biosensors. The counterintuitive, and beneficial, behavior that biosensors with higher GluOx loading displayed a lower oxygen dependence was explained in terms of the effects of enzyme loading on the affinity of GluOx for its anionic substrate. Some differences between the properties of surface immobilized GluOx and glucose oxidase are highlighted.

Item Type:Article
ID Code:4937
Uncontrolled Keywords:Glutamate, oxygen dependence, biosensors
Subjects:Area 05 - Scienze biologiche > BIO/14 Farmacologia
Divisions:001 Università di Sassari > 01 Dipartimenti > Neuroscienze, scienze materno infantili
Publisher:American Chemical Society
Deposited On:23 Nov 2010 09:46

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page