titoli, abstracts, parole chiave >>>
Generalized Gaussian distributions for sequential data classification

Bicego, Manuele and González Jiménez, Daniel and Grosso, Enrico and Alba Castro, José Luis (2008) Generalized Gaussian distributions for sequential data classification. In: Pattern Recognition, 2008: ICPR 2008: 19th International Conference, 8-11 December 2008, Tampa (FL), USA. Piscataway, IEEE. p. 1-4. ISBN 978-1-4244-2174-9. Conference or Workshop Item.

Full text disponibile come PDF Richiede visualizzatore di PDF come GSview, Xpdf o Adobe Acrobat Reader

DOI: 10.1109/ICPR.2008.4761771


It has been shown in many different contexts that the Generalized Gaussian (GG) distribution represents a flexible and suitable tool for data modeling. Almost all the reported applications are focused on modeling points (fixed length vectors); a different but crucial scenario, where the employment of the GG has received little attention, is the modeling of sequential data, i.e. variable length vectors. This paper explores this last direction, describing a variant of the well known Hidden Markov Model (HMM) where the emission probability function of each state is represented by a GG. A training strategy based on the Expectation Maximization (EM) algorithm is presented. Different experiments using both synthetic and real data (EEG signal classification and face recognition) show the suitability of the proposed approach compared with the standard Gaussian HMM.

Item Type:Conference or Workshop Item (Contribute)
ID Code:3574
Uncontrolled Keywords:Gaussian processes, electroencephalography, expectation-maximisation algorithm, face recognition, hidden Markov models, medical signal processing, signal classification
Subjects:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 Sistemi di elaborazione delle informazioni
Divisions:001 Università di Sassari > 01 Dipartimenti > Economia, impresa, regolamentazione
Publisher Policy:Depositato in conformità con la politica di copyright dell'Editore
Deposited On:26 Feb 2010 10:01

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page