titoli, abstracts, parole chiave >>>
On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation

Masia, Marco and Probst, Michael and Rey, Rossend (2005) On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation. The Journal of Chemical Physics, Vol. 123 (16), p. 1-13. eISSN 1089-7690. Article.

[img]
Preview
Full text disponibile come PDF Richiede visualizzatore di PDF come GSview, Xpdf o Adobe Acrobat Reader
202Kb

DOI: 10.1063/1.2075107

Abstract

Our initial study on the performance of molecular polarization methods close to a positive point charge [M. Masia, M. Probst, and R. Rey, J. Chem. Phys. 121, 7362 (2004)] is extended to the case in which a molecule interacts with a real cation. Two different methods (point dipoles and shell model) are applied to both the ion and the molecule. The results are tested against high-level ab initio calculations for a molecule (water or carbon tetrachloride) close to Li+, Na+, Mg2+, and Ca2+. The monitored observable is in all cases the dimer electric dipole as a function of the ion-molecule distance for selected molecular orientations. The moderate disagreement previously obtained for point charges at intermediate distances, and attributed to the linearity of current polarization methods (as opposed to the nonlinear effects evident in ab initio calculations), is confirmed for real cations as well. More importantly, it is found that at short separations the phenomenological polarization methods studied here substantially overestimate the dipole moment induced if the ion is described quantum chemically as well, in contrast to the dipole moment induced by a point-charge ion, for which they show a better degree of accord with ab initio results. Such behavior can be understood in terms of a decrease of atomic polarizabilities due to the repulsion between electronic charge distributions at contact separations. It is shown that a reparametrization of the Thole method for damping of the electric field, used in conjunction with any polarization scheme, allows to satisfactorily reproduce the dimer dipole at short distances. In contrast with the original approach (developed for intramolecular interactions), the present reparametrization is ion and method dependent, and corresponding parameters are given for each case.

Item Type:Article
ID Code:347
Status:Published
Refereed:Yes
Uncontrolled Keywords:Water, organic compounds, lithium, sodium, magnesium, calcium, ab initio calculations, molecular orientation, potential energy functions, electric fields
Subjects:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Divisions:001 Università di Sassari > 01 Dipartimenti > Chimica
Publisher:American Institute of Physics
eISSN:1089-7690
Publisher Policy:Depositato in conformità con la politica di copyright dell'Editore
Deposited On:18 Aug 2009 10:02

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page