UnissResearch

Logo Universitàegli studi di Sassari
titoli, abstracts, parole chiave >>>
Morphine withdrawal-induced morphological changes in the nucleus accumbens

Spiga, Saturnino and Puddu, Maria Cristina and Pisano, Milena and Diana, Marco (2005) Morphine withdrawal-induced morphological changes in the nucleus accumbens. European Journal of Neuroscience, Vol. 22 (9), p. 2332-2340. eISSN 1460-9568. Article.

Full text not available from this repository.

DOI: 10.1111/j.1460-9568.2005.04416.x

Abstract

Morphine withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment (from 20 to 140 mg/kg of morphine twice a day over 14 days at escalating doses) rats were withdrawn from chronic morphine spontaneously and pharmacologically. In these two distinct conditions we studied the effects of withdrawal on the morphology of MSN of the core and shell of the nucleus accumbens (Nacc). MSN were stained with the Golgi–Cox procedure and analysed by a confocal laser-scanning microscope (CLSM). Our analysis shows that, shell and core MSN differed significantly for perikarya size and spine density, and the various morphine treatments did not affect the perikarya morphometry. Both spontaneous and naloxone-induced withdrawal produced a similar reduction in spine density in MS shell neurons, as compared with MS core neurons. This effect is selectively localized at the level of second order dendritic trunks where afferents converge. By contrast, spine density counts of accumbens MSN from rats chronically treated with morphine, did not reveal any change. Collectively, the results of the present study are twofold: (i) spontaneous and pharmacologically precipitated withdrawal, but not chronic morphine per se, affects spine density of target structures of a reduced mesolimbic dopamine transmission, and (ii) the reduction of spine density in second order dendritic trunks is selectively segregated in the MSN of the shell of the Nacc. In conclusion, morphine withdrawal dramatically alters spine density, selectively in second order dendritic trunks of Nacc shell MSN, thereby further impoverishing the already abated dopamine (DA) transmission. This is in line with recent views suggesting the hypodopaminergic state as a cardinal feature of opioid dependence.

Item Type:Article
ID Code:2391
Status:Published
Refereed:Yes
Uncontrolled Keywords:Dendritic spines, drug addiction, medium spiny neurons, morphine withdrawal, neuronal plasticity, nucleus accumbens
Subjects:Area 05 - Scienze biologiche > BIO/14 Farmacologia
Divisions:001 Università di Sassari > 01 Dipartimenti > Scienze del farmaco
Publisher:Blackwell / Wiley
eISSN:1460-9568
Copyright Holders:© 2005 Federation of European Neuroscience Societies
Deposited On:18 Aug 2009 10:07

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page