titoli, abstracts, parole chiave >>>
An Integrated biological approach to guide the development of metal-chelating inhibitors of influenza virus pa endonuclease

Stevaert, Annelies and Nurra, Salvatore and Pala, Nicolino and Carcelli, Mauro and Rogolino, Dominga and Shepard, Caitlin and Domaoal, Robert A. and Kim, Baek and Alfonso-Prieto, Mercedes and Marras, Salvatore A. E. and Sechi, Mario and Naesens, Lieve (2015) An Integrated biological approach to guide the development of metal-chelating inhibitors of influenza virus pa endonuclease. Molecular Pharmacology, Vol. 87 (2), p. 323-337. eISSN 1521-0111. Article.

Full text not available from this repository.

DOI: 10.1124/mol.114.095588

Abstract

The influenza virus PA endonuclease, which cleaves capped cellular pre-mRNAs to prime viral mRNA synthesis, is a promising target for novel anti–influenza virus therapeutics. The catalytic center of this enzyme resides in the N-terminal part of PA (PA-Nter) and contains two (or possibly one or three) Mg2+ or Mn2+ ions, which are critical for its catalytic function. There is great interest in PA inhibitors that are optimally designed to occupy the active site and chelate the metal ions. We focused here on a series of β-diketo acid (DKA) and DKA-bioisosteric compounds containing different scaffolds, and determined their structure-activity relationship in an enzymatic assay with PA-Nter, in order to build a three-dimensional pharmacophore model. In addition, we developed a molecular beacon (MB)–based PA-Nter assay that enabled us to compare the inhibition of Mn2+ versus Mg2+, the latter probably being the biologically relevant cofactor. This real-time MB assay allowed us to measure the enzyme kinetics of PA-Nter or perform high-throughput screening. Several DKA derivatives were found to cause strong inhibition of PA-Nter, with IC50 values comparable to that of the prototype L-742,001 (i.e., below 2 μM). Among the different compounds tested, L-742,001 appeared unique in having equal activity against either Mg2+ or Mn2+. Three compounds (10, with a pyrrole scaffold, and 40 and 41, with an indole scaffold) exhibited moderate antiviral activity in cell culture (EC99 values 64–95 μM) and were proven to affect viral RNA synthesis. Our approach of integrating complementary enzymatic, cellular, and mechanistic assays should guide ongoing development of improved influenza virus PA inhibitors.

Item Type:Article
ID Code:10927
Status:Published
Refereed:Yes
Uncontrolled Keywords:Influenza virus PA endonuclease, mRNA, catalytic function, β-diketo acid
Subjects:Area 03 - Scienze chimiche > CHIM/08 Chimica farmaceutica
Divisions:001 Università di Sassari > 01-a Nuovi Dipartimenti dal 2012 > Chimica e Farmacia
Publisher:American Society for Pharmacology and Experimental Therapeutics
eISSN:1521-0111
Deposited On:05 Jun 2015 18:10

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page