titoli, abstracts, parole chiave >>>
3D spatially controlled chemical functionalization on alumina membranes

Falcaro, Paolo and Trinchi, Adrian and Doherty, Cara and Buso, Dario and Costacurta, Stefano and Hill, Anita J. and Patelli, Alessandro and Scopece, Paolo and Marmiroli, Benedetta and Amenistch, Heinz and Lasio, Barbara and Pinna, Alessandra and Innocenzi, Plinio and Malfatti, Luca (2014) 3D spatially controlled chemical functionalization on alumina membranes. Science of Advanced Materials, Vol. 6 (7), p. 1520-1524(5). ISSN 1947-2935. Article.

Full text not available from this repository.

DOI: 10.1166/sam.2014.1841


Among the myriad microfabrication approaches, Deep X-ray Lithography (DXRL) takes advantage of the high penetration depth of hard X-rays. For the first time, this feature has been exploited for the precise control of surface chemical functionalities on a thick porous ceramic material. As a proof of concept, porous alumina membranes with controlled thickness (50 µm) have been chosen to test the potential of DXRL. The Al2O3 membranes were decorated with fluoro- and amino-silanes. These functionalized ceramic membranes were exposed to hard X-rays in a synchrotron facility, which allowed for the selective decomposition of the chemical functionalities in controlled areas. The water contact angle of hydrophobic-functionalized samples was measured to confirm the decomposition of the fluoro-silane in the exposed area, and water diffusion through the 200 nm pores of the alumina membranes was observed to occur only in the exposed area. The patterned amino-functionalized Al2O3 samples were tested with an alcoholic solution containing Au cations, where it was found that gold nanoparticles only formed in the unexposed areas, whereas the amino functionality survived the radiation damage induced by the X-rays.

Item Type:Article
ID Code:10818
Uncontrolled Keywords:Chemical functionalization, lithography, microfabrication, porous membrane
Subjects:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Divisions:001 Università di Sassari > 01-a Nuovi Dipartimenti dal 2012 > Architettura, Design e Urbanistica > LMNT-Laboratorio di Scienza dei Materiali e NanoTecnologie
Publisher:American Scientific Publishers
Deposited On:24 Mar 2015 10:46

I documenti depositati in UnissResearch sono protetti dalle leggi che regolano il diritto d'autore

Repository Staff Only: item control page