"Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors"
Citazione

“Sia la meta cui giungi il punto onde tu muovi per tendere a nuova meta.”

Arturo Graf, Ecce Homo, 1908
Dedica

A Pietro,
perché mi incoraggia ogni giorno.
Introduction

The present thesis reports ideas, experiences, experimental work and results pursued during the PhD course. In the first chapter is described the work done during the first year of my PhD experience in the laboratory of organic chemistry, under the supervision of Dr. Lidia De Luca. More precisely, it details on the methodology developed for the synthesis of amides from aldehydes and amines by proper activation of the aldehydic C-H bond. The technique involves the formation *in situ* of N-chloro amines, followed by addition the appropriate aldehyde, which mixture in the presence of TBHP and Cu(OAc)$_2$, leads to the formation of a new CN bond. The method has been proposed as a facile synthesis of amides variously substituted and in good yields.

The second chapter reports the projects carried out under the supervision of Dr. Sechi in the laboratory of medicinal chemistry, during the second and the third year of my PhD internships. During this period, I focused on the development of novel and selective carbonic anhydrase inhibitors (CAIs). This chapter is divided into four subchapters including a) the application of the “click chemistry” as a powerful synthetic approach for the generation of sulfonamide-based inhibitors; b) the synthesis of a set of derivatives belonging to a previously indentified hit compound bearing the trifluorodihydroxypropanone moiety, and the strategy adopted for its biological optimization; c) the design and development of novel pyrazole-carboxylic acids derived from a previously identified lead compound, as well as its pharmacobiological optimization; d) the synthesis of potential...
carbonic anhydrase inhibitors carrying a benzoxaborole scaffold, carried out during the last year of my PhD at the laboratory of Prof. Jean-Yves Winum, at the Institut des Biomolecules Max Mousseron University of Montpellier II (France) within the program “Erasmus placement”.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
INDEX

CHAPTER 1:

Synthesis of amides from aldehydes and amines via C-H bond activation

1.1 Introduction 1

1.2 Conventional approaches for the synthesis of amides 2

1.2.1 Acylation of amines with carboxylic acid derivatives 3

1.2.2 Alternative methods for amide synthesis 5

1.3 Formation of new bonds via C-H bond activation 6

1.3.1 C-H bond activation for Carbon-Carbon and Carbon-Oxygen bond formation 7

1.3.2 C-H bond activation for Carbon-Nitrogen bond formation 11

1.3.3 C-H bond activation for Carbon-Nitrogen amide bond formation 13

1.3.3.1 Oxidative amidation of aldehydes with amines 13

1.3.3.2 C-H activation for the Carbon-Nitrogen amide bonds formation via radical pathway 17

1.4 Synthesis of amides from aldehydes and amines via C-H bond activation 19

1.4.1 Optimization of the reaction conditions 20

1.4.2 Test of the methodology on different substrates 23

1.4.3 Elucidation of reaction mechanism 28

1.4.4 Trapping the acyl radical 30

1.4.5 Conclusions and perspectives 31
CHAPTER 2:

Discovery and development of novel selective Carbonic Anhydrases inhibitors (CAIs) 32

2.1 Introduction on Carbonic Anhydrases (CAs) 32

2.1.1 Structure of human CAs 32

2.1.2 Catalytic mechanism of hCAs 36

2.1.3 Physiological functions of hCA isozymes 38

2.1.4 Pathological implications of hCAs isozymes 39

2.1.5 Classical CAs inhibitors (CAIs) 41

2.2 Rational: work plan 44

2.3 Click Chemistry as powerful tool for generating CAIs 46

2.3.1 Chemistry 49

2.3.2 X-ray crystallography 50

2.3.3 Conclusions and perspectives 52

2.4 Development of a novel class of CAIs containing a trifluorohydroxy propanone pharmacophore 53

2.4.1 Objectives 56

2.4.2 Chemistry 58

2.4.3 Biological assays 64

2.4.4 Molecular Modeling 66

2.4.5 Conclusions and perspectives 68
2.5 Synthesis of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives as CAIs

2.5.1 Objectives 72
2.5.2 Chemistry 74
2.5.3 Biological assays 77
2.5.4 Molecular Modeling 78
2.5.5 Conclusions and perspectives 81

2.6 Preliminary evaluation of antiproliferative activity for representative compounds of series III and IV 81

2.7 Synthesis of potential CAIs carrying a benzoxaborole scaffold 85

2.7.1 Introduction 85
2.7.2 Benzoxaborole scaffold in drug design 87
2.7.3 Benzoxaborole as potential CAIs 92
2.7.3.1 Design of synthetic plan for benzoxaborole derivatives 93
2.7.3.2 Synthesis of a series of \(N,N' \)-disubstituted ureas 94
2.7.3.3 Synthesis of a series of \(N,N' \)-disubstituted thioureas 95
2.7.3.4 Characterization of the compounds 97
2.7.3.5 Enzyme assays 98
2.7.3.6 Work in progress 100

2.8 General conclusions 101

Experimental Section 102

Experimental Section: Chapter 1 103
Experimental Section: Chapter 2 119

Co-Crystallization and X-ray data collection of hCA II-ligand complexes 166

Structure determination of CA II drug complexes 167

CA inhibition studies 168

Cell culture 169

Assessment of cell viability 170

References and notes 171
Chapter 1:

Synthesis of amides from aldehydes and amines via C-H bond activation

1.1 Introduction

Amides are prevalent structural motifs that are found in biological systems, such as proteins, as well as in natural products and synthetic intermediates.¹

Amide bonds are not limited to biological systems and are indeed present in an immense array of drugs. In fact, more than 25% of known pharmaceutical compounds contain the amide group.²

In Fig. 1 are shown some amide-bond containing drugs actually widely present in the market: Atorvastatin (1), used for lowering blood cholesterol and for prevention of the events associated with cardiovascular diseases; Lisinoprin (2) used for the treatment of hypertension; Valsartan (3), which blocks the action of angiotensin, dilates blood vessels and reduces blood pressure; Diltiazem (4), a calcium channel blocker, used to treat hypertension, angina and certain heart rhythm disorders.
As a consequence, the synthesis of amides has attracted considerable interest and a number of methods have been devised.

1.2 Conventional approaches for the synthesis of amides

Amide bonds are typically synthesized by acylation of amines with carboxylic acid derivatives (acid chloride, anhydride, active esters, etc.) because the unification of amine and carboxylic acid does not occur spontaneously at room temperature but take place only at high
temperatures,3 conditions typically detrimental to the integrity of the substrates.

1.2.1 Acylation of amines with carboxylic acid derivatives

To activate the carboxylic acid moiety is necessary to convert the hydroxyl group of the acid into a good leaving group prior treatment with the amine, using coupling reagent to generate compounds such as acid chlorides, anhydrides, or active esters (Scheme 1.1).

\begin{center}
\textbf{Scheme 1.1}
\end{center}

Hundreds of coupling reagents have been reported for this scope: carbodiimides have been used as activators for decades in solid-phase and solution peptide synthesis. They still hold their place, though in recent years two classes of coupling reagents became popular, the phosphonium- and the aminium-(immonium-) type reagents such as BOP, TBTU, HBTU, HATU (Fig. 2).

\begin{center}
\textbf{Fig. 2} Structure of the phosphonium-and the aminium-(immonium-) coupling reagents.
\end{center}
These compounds have achieved high coupling rates accompanied by few undesired side reactions.4

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Although acylation of amines with carboxylic acid derivatives is a frequent methodology used in the synthesis of current pharmaceuticals, accounting for 16% of all reactions, this strategy, besides utilizing hazardous reagents, has the innate drawback of producing a stoichiometric amount of waste product.

1.2.2 Alternative methods for amide synthesis

To circumvent the problems mentioned above, alternative methods for amide synthesis were developed (Scheme 1.2):

- alternative Staudinger reaction\(^5\) by coupling of an azide group and a specifically engineered triarylphospine;
- the Beckmann\(^6\) rearrangements, that efficiently convertes oximes into amides with very high selectivity using ruthenium or triphosphazene, 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-chloride (TAPC) as catalysts;
- aminocarbonylation of aryl chloride\(^7\) at atmospheric carbon oxide pressure and at moderate temperatures, employed for a wide range of aryl chlorides and amines;
- a non-conventional amide synthesis via iodonium-promoted nitroalkane–amine coupling which provides a conceptually innovative approach to amide and peptide synthesis;\(^8\)
- direct amide synthesis from alcohols with amines or nitroarenes;\(^9\)
- hydroamination of alkynes;\(^10\)
- amidation of thioacids with azides;\(^11\)
- transamidation of primary amides.\(^12\)
Scheme 1.2 Examples of newer methodologies for amide bond formation.

Staudinger ligation

\[
\text{R-S-PPh}_2 + \text{N}_3\text{O-R}_1 \rightarrow \text{R-O-H-N-R}_1
\]

Beckmann rearrangement

\[
\text{NOH} \quad \text{Ru or TAPC catalysts} \quad \rightarrow \quad \text{R-OH} \quad \text{R-NH}_2
\]

TAPC = 1,3,5-triazoo-2,4,6-triphosphorine-2,4,6,6-chloride

Iodonium-promoted nitroalkane-amine coupling

\[
\text{Ph-NO}_2 + \text{NH}_2\text{Ph} \quad \text{NIS, base} \quad \rightarrow \quad \text{Ph-O-N-Ph}
\]

NIS = N-iodosuccinimide

Despite this great number of available synthetic pathways to obtain the amide bond, most of these are not utilized in industry due to their drawbacks such as the use of expensive transition metal catalysts, limited substrate scope, harsh reaction conditions, etc.

1.3 Formation of new bonds via C-H bond activation

The term “C-H activation” refers to reactions involving the cleavage of an unreactive C-H bond of alkanes, arenes, or alkyl chains by transition metal complexes to form products with metal-carbon bond. Many efforts have been devoted to the design and synthesis of new reagents and catalysts...
that can affect C–H activation, and transform this bond into target functional groups (Fig. 3).

Fig. 3 Representative oxidative transformations of C–H bonds.

1.3.1 C-H bond activation for Carbon-Carbon and Carbon-Oxygen bond formation

The vast majority of transition-metal catalyzed C–H oxidation reactions have focused on the transformation of C–H bonds into C–C bonds, because they provide key steps in building more complex molecules from simple precursors. Cross-dehydrogenative coupling, also called CDC reaction, is a powerful strategy for the construction of C–C bonds, and a pioneering work by Li et al. in this area showed the activation of two different C-H bonds under oxidative conditions (Scheme 1.3). The Account describes that in the presence of simple and cheap catalysts such as copper and iron salts and oxidants (ie, hydrogen peroxide, oxygen, tert-butylhydroperoxide (TBHP), and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)), to directly transform various sp³ C-H bonds in other C-C bonds without requiring preactivation, notable progress has also recently been
made in arene-arene coupling via the oxidative reaction of sp² C-H/sp² C-H bonds.

Scheme 1.3 Examples of C-C Bond Formations.

\[C-H + H-C \xrightarrow{catalyst} C-C \]

Alkylation (sp³-sp coupling)

\[\text{CuBr (5 mol%)} \quad \text{TBHP (1-1.2 eq)} \quad 100 \, ^\circ \text{C}, 3 \text{ h} \]

\[\text{Ar} \quad + \quad H \equiv \equiv \text{R} \quad \rightarrow \quad \text{Ar} \equiv \equiv \quad \text{R} \]

Arylation (sp³-sp² coupling)

\[\text{R} \quad + \quad \text{R} \quad \rightarrow \quad \text{Ar} \quad + \quad \text{R} \]

Alkylation (sp³-sp³ coupling)

\[\text{R} \quad + \quad \text{R} \quad \rightarrow \quad \text{R} \quad + \quad \text{R} \]

\[\text{CuBr (cat.)} \quad \text{O}_2 \, (1 \text{ atm}), \text{H}_2\text{O} \]

\[\text{R}_2 \quad \text{N} \quad + \quad \text{R}_3 \quad \rightarrow \quad \text{R}_2 \quad \text{N} \quad + \quad \text{H}_2\text{O} \]

\[\text{R}_2 \quad \text{N} \quad + \quad \text{R}_3 \quad \rightarrow \quad \text{R}_2 \quad \text{N} \quad + \quad \text{H}_2\text{O} \]

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
The transition-metal-catalyzed functional-group-directed C-H bond functionalization is used to achieve C-O connections too. C–O bond formation reactions are among the most important processes in chemistry because they provide key steps in building many key molecules, which are useful intermediates in organic synthesis, and are found in an impressive number of biological or natural products.

For example, in 2006 a copper-catalyzed oxidative esterification of aldehydes with β-dicarbonyl compounds was developed using tert-butylhydroperoxide as oxidant (Scheme 1.4). In general, the enol esters were synthesized in good yields (up to 87%) and high stereoselectivity under the optimized reaction conditions.

In 2010, Beller’s group published the first example of iron-catalyzed selective oxidation of the sp² C–H bond of arenes and phenols.

Robert Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
Under two types of three component catalytic system (FeCl₃·6H₂O:H₂Pydic:amine=1:1:2.2), oxidation of 2-methyl-naphthalene and TMP (2,3,6-trimethylphenol) took place in 55% and 77% yield respectively (Scheme 1.5). This oxidation reaction offered an important method for the synthesis of vitamin E intermediates and vitamin K3.

Scheme 1.5

In 2011, Reddy and co-workers developed a copper-catalyzed oxidative C-O coupling reaction for the efficient synthesis of enol and phenol carbamates (Scheme 1.6).¹⁹
Some of the advantages of this procedure are the simple operations and the phosgene-free, thus avoiding the use of toxic and harmful reagents. Moreover, a high stereoselectivity was achieved for enol carbamates and the present strategy was also extended to oxidative esterification of carbonyl-substituted phenols.

1.3.2 C-H bond activation for Carbon-Nitrogen bond formation

The generation of new methods for direct conversion of C-H bonds into carbon-nitrogen bonds appears to be a critical but appealing challenge in organic chemistry. However, compared with widely developed and age long carbon-carbon and carbon-oxygen bond formations via C-H bond activation, the C-N bond formation from C-H’s seems more problematic and was reported just in recent years.\(^\text{20}\)

Robert Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
In 2008, Fu and co-workers reported the first example of amidation of benzylic sp3 C–H bonds by using the efficient, inexpensive and air-stable FeCl$_2$/NBS as a catalyst/oxidant system.21 Under the best reaction conditions, series of the benzylic reagents underwent amidation reaction in reasonable yields (60-80%) (Scheme 1.7), utilizing carboxamides and sulphonamides as amidation agents.

Scheme 1.7

![Image](image_url)

NBS = N-Bromosuccinimide

In 2011, Chang and co-workers described an intramolecular oxidative C–N bond formation for the synthesis of carbazoles (Scheme 1.8),22 using diacetoxyiodobenzene as oxidant under Cu-catalyzed conditions and affording high yield of the desired product through very mild reaction conditions.

Scheme 1.8

![Image](image_url)

In the same year, Wu and Li described a silver and copper cocatalyzed multicomponent reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, and tertiary amine, which provides a novel and efficient route for the generation of H-pyrazolo[5,1-a]isoquinolines in good yields, under mild conditions.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
conditions (Scheme 1.9). The tertiary amine was activated via the oxidation of an aliphatic C–H bond catalyzed by a dioxygen–copper system and air was used as the oxidant.

![Scheme 1.9](image)

1.3.3 C-H bond activation for the Carbon-Nitrogen amide bond formation

1.3.3.1 Oxidative amidation of aldehyde with amines

Among the emerging amide formation methods, the direct oxidative amidation of aldehydes with amine (Scheme 1.10) is an attractive method with practicality and potential industrial applications. In fact, this method is more atom economic and utilizes very cheap and abundant starting materials. The best accepted mechanism of this method consists of the formation of a hemiaminal intermediate, which is subsequently oxidized to the amide.

Scheme 1.10 Accepted mechanism for Oxidative amidation of aldehydes with amine.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
An important advantage of this approach is that C-N bond formation and oxidation are integrated into a single operation while the generation of a free carboxylic acid intermediate, which may not be compatible with other functional groups, is avoided. Although direct oxidative amination of aldehydes utilizes readily available starting materials and is considered an economically attractive alternative to routine amide formation, only a few examples have been reported until 2007. Generally, these reactions are catalyzed by metals, such as Cu, Rh, Ru, Pd, Ni, and Fe.

For example in 2001 Beller’s groups employed ruthenium catalysts in oxidative aminations of aldehydes with secondary amines (Scheme 1.11).

\[
\text{Scheme 1.11}
\]

\[
\begin{align*}
\text{R}^+\text{H} + \text{R}_1^+\text{N}_2^+ &\xrightarrow{[\text{Rh(COD)}_2]BF_4} \text{R}^+\text{N}^{\text{R}}\text{R}_2^+ \\
\text{K}_2\text{CO}_3, \text{THF, 100°C} &\quad \text{yields: 22.96%}
\end{align*}
\]

With regards to the mechanism of the rhodium-catalyzed oxidative amination of aldehydes, the authors proposed that the amino alcohol may coordinate to the rhodium(I) complex (Scheme 1.12). Dehydrogenation of the amino alcohol yields the corresponding amide and a rhodium(III) dihydride complex, which reduces the aldehyde to the corresponding alcohol, or the aminal to the amine.
This method could be applied to different substituted aromatic and some aliphatic aldehydes, but only to secondary amines.

In 2006, Li et al. described an elegant copper-catalyzed procedure that allows oxidative amination of aldehydes in the presence of silver iodate (Scheme 1.13).24
The oxidative amidation was also compatible with a variety of electron-rich and electron-poor aryl aldehydes (yields 39-91%). Interestingly, when the oxidative amidation reaction was applied to optically active amine ester, the reaction proceeded smoothly in high yield without racemization. However, when aliphatic aldehydes were utilized as a coupling partner, the desired amide was obtained with a low yield. In addition, the reaction could be applied only to amine hydrochloride salts, with the need of a base to deprotect the amine.

In 2007 Wolf et al.\(^3\) reported the first metal-free oxidative amination of aldehydes with free amines (Scheme 1.14). This method affords amides in 85-99% yield with use of TBHP and in contrast to previously reported procedures, it does not require the use of an expensive transition metal catalyst, base or other additives, or an excess of either the amine or aldehyde, and it avoids harsh reaction conditions. Anyway, this method could be applied only to aromatic aldehydes and secondary amines.

Robert Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Nevertheless, most of the methods outlined above suffer from drawbacks derived from the steric attributes of the amine and the aldehyde, the formation and stability of the hemiaminal intermediate, the use of expensive transition metal catalysts, the limited substrate scope, and the utilization of coreagents. Therefore, the development of simpler, cheaper and more direct amide formation reactions remains a great goal to pursue.

1.3.3.2 C-H activation for the Carbon-Nitrogen amide bond formation via the radical pathway

In 2012, Wan31 and Wang32 published two interesting examples of C-N bond formation via the coupling of radicals. The Wan’s paper showed a synthesis that is based upon the coupling of acyl and aminyl radicals. Undoubtedly, a radical process,33 for example the coupling of acyl- and nitrogen-centered radicals, is a fundamentally different method for the formation of amide bonds. Previously, the same group developed a Bu\textsubscript{4}NI-catalyzed tert-butyl perester synthesis,34 in which acyl radicals, generated \textit{in situ} from aldehydes, could be trapped by 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). Inspired by this success, they envisioned the coupling of a nitrogen-centered radical, instead of TEMPO, with the acyl radical to provide a method for amide synthesis. Testing the reaction on 1-naphthaldehyde, Bu\textsubscript{4}NI as catalyst and \textit{tert}-butyl hydroperoxide as oxidant (\textbf{Scheme 1.15}), they made a screening on a variety of amine derivatives, as N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), N-iodosuccinimide (NIS), Chloramine-T, hydrazine and hydroxylamine used as potential donors of nitrogen-centered radicals. It was found that DMF is an effective source of aminyl radicals.
Table 1 Screening on a variety of amine derivatives as potential donors of nitrogen-centered radicals.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹R²N-X</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N-Chlorosuccinimide</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>N-Bromosuccinimide</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>N-Iodosuccinimide</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>Chloroamine-T</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>NH₂NH₂</td>
<td><5</td>
</tr>
<tr>
<td>6</td>
<td>NH₂OH</td>
<td><5</td>
</tr>
<tr>
<td>7</td>
<td>Dimethylformamide</td>
<td>89</td>
</tr>
</tbody>
</table>

As shown in Wan’s paper, the procedure is tolerant of different substrates, operationally simple, and easy to scale-up, and for these reasons this is a powerful complement to traditional approaches for the synthesis of amides. However, the methodology cannot be applied to aliphatic aldehydes and the use of formamides limits the scope of reaction only to tertiary amides.

In the same year, Wang published the first efficient and direct synthesis of tertiary amides from alcohols and dimethylformamide (Scheme 1.16). This
transition-metal-free protocol provides a practical synthetic tool for the construction of \(N \)-substituted amides, especially \(N,N \)-dimethyl-substituted amides.

Scheme 1.16

![Scheme 1.16](image)

Even though this methodology suffers from some drawbacks (the procedures tolerate the use of only aromatic aldehydes or substituted benzyl alcohols and only \(N,N \)-disubstituted formamides), the amidation of aldehydes via C-H bond activation is a fundamentally different method for amide bond formation.

1.4 Synthesis of amides from aldehydes and amines via C-H bond activation

One of the aim of this PhD work was the development of an alternative and efficient one-pot procedure for the direct amidation of aldehydes with \(N \)-chloroamines, which can be prepared *in situ* starting from the corresponding amines, by using the tert-butyl hydroperoxide as an oxidant, under base-free conditions and catalyzed by an easily achievable copper salt (**Scheme 1.17**).
Scheme 1.17 Synthesis of Amides via a Cross-Coupling between aldehydes and N-chloroamines.

\[
\text{R}_2\text{N}^+\text{Cl}^- \text{N}_2\text{R}_1 \xrightarrow{\text{NCS}} \text{R}_2\text{N}^\text{+} \text{N}_2\text{R}_1 \xrightarrow{\text{TBHP, Copper salt}} \text{R}_3\text{N}_2\text{R}_1
\]

The process described here is simple, highly effective, and makes use of readily available starting materials, thus representing an attractive and suitable method for synthetic chemists.\(^{35}\)

1.4.1 Optimization of the reaction conditions

Our investigation began by treating 1 equiv. of dibenzylamine 1 (Scheme 1.18) with 1.1 equiv. of \(N\)-chlorosuccinimide (NCS) in dry acetonitrile at room temperature for 3 hours. After detecting the complete conversion of the amine into the corresponding \(N\)-benzyl-\(N\)-chloro-1-phenylmethanamine 2, the reaction mixture was successively treated, without further purification of the \(N\)-chloro-amine 2 generated in situ, with 5 equiv. of heptanale 3 (Scheme 1.18), Cu(OAc)\(_2\)H\(_2\)O (0.14 mol%), and 5 equiv. of tert-butyl peroxoxybenzoate (TBPB). The resulting reaction mixture was refluxed for about 50 min, and \(N,N\)-dibenzyleptanamide 4a was obtained in 38% yield (Table 2, entry 1).

In order to study the influence of the different parameters of the second step of the reaction, such as kind of oxidant, catalyst, stoichiometric molar

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
ratio of reactants and temperature, the same reaction was investigated as a model system.

Our investigation started exploring the use of different oxidants such as tert-butyl hydroperoxide (TBHP, 70% solution in water), hydrogen peroxide (H₂O₂) and oxone. It has been observed a significant improvement in yield, from 38% to 76% (Table 2, entry 2) performing the reaction with TBHP instead of TBPB, whereas no product formation was detected employing H₂O₂ and oxone (Table 2, entries 3 and 4).

Then, we continued our investigation by testing different CuII and CuI salts as catalyst to scan their effect on the formation product. The use of Cu(Acac)₂ provided the corresponding amide 4a with a lower yield (65%, Table 2, entry 5) than Cu(OAc)₂H₂O. Less interesting results were obtained using CuCl₂ and CuBr, giving the amides in 36% and 47% yields, respectively (Table 2, entries 6 and 7). Again, no amide formation was observed in the absence of the metal catalyst (Table 2, entry 8) or using Bu₄NI as an organocatalyst (Table 2, entry 9).

Further optimization studies on the effect of reagent stoichiometry showed that the ratio of aldehyde to amine 5:1 gave better results. In fact, we observed a decrease on the yield when the same reaction is performed with 3.7 equiv. of eptanale (Table 2, entry 10). However, at the end of the reaction (Table 2, entry 2) and after purification through column chromatography, it is possible to recover 60% of unreacted aldehyde, and the formation of a aldehyde-tertbutyl peroxyde was not detected. ³⁶

Moreover, we tried to reduce the number of equivalent of TBHP first trying the reaction with a ratio of TBHP to aldehyde to amine 2.5:2.5:1, but this change led a significant decrement in yield to 25% (Table 2, entry 11). Furthermore, we tried to utilize 3.7 equiv of TBHP, fixing the mole ratio of
aldehyde to amine 5:1, but the product yield was lower than using 5 equivalents (Table 2, entry 12). Again, no product formation was observed when the reaction was performed without the oxidant (Table 2, entry 13). Finally, we devised to change the reaction temperature, performing the experiment at room temperature, but the product was obtained with poor yield (Table 2, entry 14).

Scheme 1.18

![Scheme 1.18](image)

Table 2 Synthesis of Amides: Optimization study

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxydant</th>
<th>Catalyst</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBPB</td>
<td>Cu(OAc)₂·H₂O</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>TBHP</td>
<td>Cu(OAc)₂·H₂O</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>H₂O₂</td>
<td>Cu(OAc)₂·H₂O</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Oxone</td>
<td>Cu(OAc)₂·H₂O</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>TBHP</td>
<td>Cu(Acac)₂</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>TBHP</td>
<td>CuCl₂</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>TBHP</td>
<td>CuBr</td>
<td>47</td>
</tr>
</tbody>
</table>

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
To examine the general scope of this reaction, the optimized conditions were applied to a variety of commercially available amines and aldehydes. We were pleased to note that this methodology bypassed the limitation of the classical methods of amides synthesis used till now.

In most cases, as determined by disappearance of the N-chloro-amine and appearance of a new spot on TLC plate, the reaction was complete in about 50 min (Scheme 1.19).
Aliphatic aldehydes provided the resultant amides in good yields (Scheme 1.20, 4a-d) even when they were sterically hindered as in the case of pyvalaldehyde and 3,3-dimethylbutanal (Scheme 1.20, 4c-d).

A wide variety of both electron-donating substituents such as benzylic CH and OMe and electron-withdrawing substituents (ie, NO₂ and halide substituent on the aryl moiety of aldehydes) were well tolerated, providing the desired amides in moderate to excellent yields (67-97%). These results suggested that electronic effects do not hamper the reaction progress (Scheme 1.21, 4e-i) and, in general, substituents at different positions on the phenyl ring do not have a significant effect on the reaction efficiency.
Aromatic aldehydes with carbonyl substituents such as carboxymethyl ester or acetyl gave good results, too (Scheme 1.22, 4i,j). The different functional groups of these last substrates could be very useful because they provide further opportunities for subsequent chemical manipulations to increase the molecular diversity/complexity on the amides scaffold.
This protocol has also proven to be effective with thiophene-2-carbaldehyde, affording the desired heteroaryl amide (Scheme 1.23, 4l) in good yield and allowing the introduction of heterocyclic rings into the amide skeleton.

Scheme 1.23

\[
\text{Scheme 1.23}
\]

\[
\text{4l (73%)}
\]

In addition, we tested the methodology on a variety of amines, and the results showed an excellent tolerance. The reaction proceeded successfully with both secondary symmetric and asymmetric amines as well with acyclic and cyclic amine (Scheme 1.24, 4a-f, h,i, m,n.).
Noteworthy is the cross-coupling between aldehyde and monosubstituted amine, which occurred under standard conditions allowing the preparation of the interesting \(N\)-monosubstituted amides that can be selectively functionalized on the NH group (Scheme 1.25, 4o-q).

Scheme 1.25
1.4.2 Elucidation of reaction mechanism

Our data pertaining to the amidation of aldehydes with \(N \)-chloroamines can be explained by adaption of the mechanism proposed in 1962 by Kochi,\(^{37}\) who used a series of redox reactions to clarify the formation of the tert-butyl peroxides.

We suggest that when 70% aqueous TBHP is added to a mixture of substrates and catalytic amounts of Cu(OAc)\(_2\), Cu(II) react with tert-butylhydroperoxide to generate tert-butylperoxyradical (eqn. 1):

\[
\text{Eqn. (1)} \quad \text{Cu(II)} + \text{tBOOH} \rightarrow \text{Cu(I)} + \text{tBuOO}^* + \text{H}^+
\]

The reaction is carried out in acidic medium, in which \(N \)-chloroamine is protonated (eqn. 2). Then, the protonate \(N \)-chloroamine is converted into an amino radical A by a redox reaction, as elucidated by Minisci\(^{38}\) in 1973 (eqn. 2), who suggests that this key step involves the elimination of chlorine atom, rather than an electron transfer (Scheme 1.26):

\[
\text{Eqn. (2)} \quad \text{R}_1^+\text{N}_2\text{H}_2\text{Cl} + \text{H}^+ \rightarrow \text{R}_1^+\text{N}_2\text{H}^* \rightarrow \text{Cu(I)} \rightarrow \text{R}_1^+\text{N}_2\text{H}^* + \text{Cu(II)} + \text{Cl}^-
\]

Scheme 1.26
After the formation of amino radical, the presence of tert-butylperoxy radical generates an acyl radical \(B \) (eqn. 3) on the aldehyde, by abstracting the hydrogen of aldehyde, as reported in literature by Wan\(^{31}\) and Li,\(^{39}\) with the consequent regeneration of the tert-butylhydroperoxide.

\[
\text{Eqn. (3)}
\]

\[
\begin{align*}
\text{R}_3\text{C}=\text{H} + \text{iBuO} & \rightarrow \text{R}_3\text{C}^* + \text{iBuOOH} \\
\end{align*}
\]

Finally, the acyl radical \(B \) and amino radical \(A \) couple to form the expected amide \(C \) restoring the acid environment of the reaction (eqn. 4).

\[
\text{Eqn. (4)}
\]

\[
\begin{align*}
\text{R}_3\text{C}^* + \text{H}^+\text{NR}_1\text{R}_2 & \rightarrow \text{R}_3\text{N}^\text{R}_1\text{R}_2 + \text{H}^+ \\
\end{align*}
\]

The scheme depicted below summarizes the complete catalytic cycle of the amidation of aldehyde with \(\text{N-chloroamine} \) with TBHP and Cu(OAc)\(_2\).
Scheme 1.27 Proposed mechanism of amide formation.

1) t-BuOOH \rightarrow t-BuOO$^-$ + H$^+$

2) $R_1^+N_2^-$ + H$^+$ \rightarrow $R_1^+N_2^- + H^+$

3) $R_1^+N_2^-$ \rightarrow $R_1^+N_2^*$ + Cl$^-$

A

4) R_3^- \rightarrow R_3^-

B

5) B + A \rightarrow R_3^+ $R_1^+N_2^- + H^+$

C

1.4.4 Trapping the acyl radical

To confirm the hypothetic catalytic cycle, we tried to trap the acyl radical, generated in situ from benzaldehyde under the investigated reaction conditions, with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), following Wan31 and Li38 procedures, to isolate the TEMPO adduct (Scheme 1.28).

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
As expected, the TEMPO adduct D (Scheme 1.28) was formed (instead of the amide) in 40% yield under the optimized conditions, thus confirming the presence in the reaction medium of the acyl radical.

1.4.5 Conclusions and perspectives

In summary, we have reported a novel example of C-N bond formation via copper catalyzed C-H aldehyde bond activation, formed by the coupling of the acyl group with an amino radical. Our methodology was employed to prepare different amides directly from aliphatic and aromatic aldehydes and variously substituted amines. The procedure here reported appears to be simple, efficient, rapid, general in scope and uses cheap and easily available reagents. Additional studies on the mechanistic details, different catalysts, and expansion of the scope of the reaction are currently underway in our laboratory.
CHAPTER 2:

Discovery and development of novel selective Carbonic Anhydrases Inhibitors (CAIs)

2.1 Introduction on Carbonic Anhydrases (CAs)

Carbonic Anhydrases (CAs) are a family of metal enzymes present in prokaryotes and eukaryotes. These enzymes are encoded by five distinct gene families: the α-CAs, present in vertebrates, bacteria, algae and cytoplasm of green plants; the β-CAs, predominantly found in bacteria, algae and chloroplasts of mono and dicotyledons; the γ-CAs, mainly present in archaea and some bacteria; the δ-CAs, present in some marine diatoms, the ε-CAs, which occur exclusively in marine cyanobacteria that contain cso-carboxysomes.\(^{40,41}\)

All these enzymes catalyze the hydration of carbon dioxide to produce bicarbonate ion and proton:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+
\]

In the active site of the α-, β- and δ-CAs there is a Zn\(^{2+}\) ion, which is essential for catalysis, while the active site of γ-CAs probably contain Fe\(^{2+}\) (but they are active also with Zn\(^{2+}\) or Co\(^{2+}\) ions), and the metal ion is usually represented by cadmium in the ε-CAs.\(^{41}\)

2.1.1 Structure of human CAs

All human CAs (hCAs) belong to the α-class and up to now 16 dissimilar h-isozymes have been described.\(^{42}\) These isoforms are identified by the use
of a roman number and differ in their catalytic activity, amino acid sequences and sites of expression (Table 3): hCA I-II-III-VII-XIII are expressed in cytoplasm; hCA IV, IX, XII, XIV are membrane proteins; hCA VA and hCA VB are mitochondrial isoform; hCA VI is secreted in saliva and milk. Again, there are non-catalytic hCAs, which are called carbonic anhydrases related proteins (CARPs), but their precise role is not known.

Table 3 Sites of expression of hCAs.

<table>
<thead>
<tr>
<th>Isozyme</th>
<th>Subcellular localization</th>
<th>Catalytic activity (CO₂ hydration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA I</td>
<td>cytosol</td>
<td>low</td>
</tr>
<tr>
<td>CA II</td>
<td>cytosol</td>
<td>high</td>
</tr>
<tr>
<td>CA III</td>
<td>cytosol</td>
<td>very low</td>
</tr>
<tr>
<td>CA IV</td>
<td>membrane-bound</td>
<td>medium</td>
</tr>
<tr>
<td>CA VA</td>
<td>mitochondria</td>
<td>low</td>
</tr>
<tr>
<td>CA VB</td>
<td>mitochondria</td>
<td>high</td>
</tr>
<tr>
<td>CA VI</td>
<td>secreted into saliva and milk</td>
<td>low</td>
</tr>
<tr>
<td>CA VII</td>
<td>cytosol</td>
<td>high</td>
</tr>
<tr>
<td>CA VIII</td>
<td>cytosol</td>
<td>acatalytic</td>
</tr>
<tr>
<td>CA IX</td>
<td>transmembrane</td>
<td>high</td>
</tr>
<tr>
<td>CA X</td>
<td>cytosol</td>
<td>acatalytic</td>
</tr>
<tr>
<td>CA XI</td>
<td>cytosol</td>
<td>acatalytic</td>
</tr>
<tr>
<td>CA XII</td>
<td>transmembrane</td>
<td>low</td>
</tr>
<tr>
<td>CA XIII</td>
<td>cytosol</td>
<td>low</td>
</tr>
<tr>
<td>CA XIV</td>
<td>transmembrane</td>
<td>low</td>
</tr>
</tbody>
</table>

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
All hCA isoforms show high similarity in the primary sequence (the sequence length of CA ranges from 260 to 459 amino acid residues) and this leads to high degree of structural analogy among themselves. In fact, all hCAs (except hCA VI, IX and XII) exist in monomeric forms composed of seven right handed α-helices, and a twisted β-sheet formed by 10 β-strands (two parallel and eight antiparallel). The CA catalytic domains in transmembrane hCA IX and hCA XII have a similar, but dimeric structure. hCA II is the most abundant isozyme present in humans and is the most well studied of all hCA isoforms. Therefore, the description of its catalytic core has been used a suitable model for the structural comprehension of these enzymes.

The CA active site can be described as a cone-shaped cavity formed by a hydrophobic region (Val121, Val143, Leu198, Val207 and Trp209), and a hydrophilic region (Tyr7, Asn62, His64, Asn67, Thr199 and Thr200). Deep inside of the cavity is located the Zn$^{2+}$, which is essential for catalysis, tetrahedrally coordinated by three histidines (His94, His96 and His119) which are conserved in all isoforms (Fig. 3). Although the core of the active site in α-CAs is highly conserved, there is variability in the polarity of its surroundings. The reason behind the CARPs being non-catalytic has been attributed to the absence of one or more histidines that coordinate the Zn$^{2+}$ ion in the active site of a catalytic hCA isoforms.
In the active site Zn$^{2+}$ is coordinated also by a water molecule/hydroxide ion as a fourth ligand solvent generating a tetrahedral adduct. This water molecule is involved in a series of hydrogen bonds which enhance its nucleophilicity. In particular, it is bonded with the hydroxyl moiety of a conserved Thr199 and with two water molecules: one is called “deep water”, which is located in the hydrophobic cavity, and the other one is located at the entrance of the active site (Fig. 4). This polyhedral structure is a conserved feature of hCAs, which is present among all the catalytically isoforms known.
Fig. 4. The active site of hCA II, which has been chosen as representative CA isoform. The Zn$^{2+}$ is tetrahedrally coordinated by the three catalytic histidines and a water molecule/hydroxide ion, which is engaged in a well-defined network of hydrogen bonds. Water molecules are indicated as red spheres.46

2.1.2 Catalytic mechanism of hCAs

The structural evidence on catalytic mechanism of hCAs was obtained on 2009 with two independent crystallographic studies showing the entrapment of CO$_2$ in the hCA II active site.47 Carbon dioxide is bound within a hydrophobic pocket in an orientation suitable to receive a nucleophilic attack on the carbon atom by the zinc bound hydroxide ion (Scheme 2.1). The first step of catalysis is a nucleophilic attack of the active form of the enzyme A, with the hydroxide bound to the zinc ion, on incoming CO$_2$ leading to the formation of bicarbonate coordinated to Zn$^{2+}$ (Scheme 2.1, C). The binding of HCO$_3^-$ at the metal is weak and consequently is displaced by a water molecule and liberated into solution, leading to the acid form of the enzyme, with water coordinated to Zn$^{2+}$ (Scheme 2.1, D), which is catalytically inactive. In order
to regenerate the basic form A, a proton transfer reaction takes place. This process, which is the rate-limiting step, may be assisted by the active site residues (such as His 64, the proton shuttle in isozymes hCA I and II) or by buffers present in the medium.40a,48

Scheme 2.1 Catalytic mechanism of hCAs.

In addition to the physiological reaction, hCAs catalyze a variety of other reactions including the hydration of cyanate to carbamic acid, hydration of...
cyanamide to urea, hydration of aldehydes to gem-diols, hydrolysis of carboxylic or sulfonic acid to esters.40a However, up to now, is not clear if these reactions play a significant role in physiological conditions.

2.1.3 Physiological functions of hCA isozymes49

In humans, the hCA isoforms are involved in different physiological processes. hCA I, II and IV play an important role in breathing the regulation of acid/base by a) transporting of CO\textsubscript{2}/bicarbonate between tissues and sites excretion (kidneys and lungs), b) facilitating the excretion of CO\textsubscript{2} in capillaries and into the tissue microvascular lung, c) removing H+ ions in renal tubules and collecting ducts, and d) reabsorbing bicarbonate ions within the brush and in the intestinal tract ascending limb of Henle in the kidneys. hCA II, IV and XII are involved in the enrichment in baking mood aqueous humor in the eye.40a,48 The hCA II also contributes to the development of bone and osteoclast differentiation. Several isoforms are implicated in the secretion of electrolytes in different organs and tissues, making possible the formation of cerebrospinal fluid, saliva, of gastric juice, bile and pancreatic juice. Some CAs are implicated in the mechanisms olfactory and taste in gastric protection, regulation of the pH of the seminal fluid in muscle function, as well as adaptive phenomena in the processes of cellular stress. hCA II, hCA VA and hCA VB take part in major metabolic pathways such as gluconeogenesis, the biosynthesis of fatty acids and the synthesis of pyrimidine derivatives.40a,49 hCA VI is associated with secretions from glandular tissues, so this distinctive secretory isozyme is specifically expressed in the salivary glands of mammals, and other systems having secretory activities like nasal,
lacrimal, von Ebner’s and mammary glands. Among the three transmembrane hCAs, isoforms IX and XII are expressed in the gastrointestinal mucosa. hCA XIV is present in the brain and retina and is believed to aid in the removal of CO₂ from the neural retina, and helps in modulation of photoreceptor function.

2.1.4 Pathological implications of hCAs isozymes

The implication of CAs in a variety of physiological processes showed that abnormal levels or activities of these enzymes have been often associated with different human diseases. Subsequently, in recent years hCA isozymes have become interesting targets for the design of inhibitors or activators with biomedical applications. CA inhibitors (CAIs) have been originally used as diuretics, antiglaucoma agents, antiepileptics, and in the management of altitude sickness, antiobesity, and antitumor drugs/diagnostic tools. On the other hand, CA activators may have pharmacological applications in pathologies in which learning and memory are impaired, such as Alzheimer’s disease or aging. Some of hCAs (such as hCA I and II) are ubiquitous and may be both targets for some diseases and off-targets, and in this case their interaction should be avoided. For example, since hCA IX and XII can be involved in the proliferation of various hypoxic tumors, these isozymes should be inhibited by compounds which do not affect the activity of CA I, II, VA, and VB. Focusing on hCA I, several evidences demonstrated that it is involved in different pathological processes. For example, a decrease of hCA I activity in erythrocytes has been correlated to some types of anaemia and chronic acidosis. Interestingly, Gao et al. reported that the excessive retinal vascular permeability, a condition that
promotes eye diseases such as the diabetic macular edema and the proliferative diabetic retinopathy, was correlated with a high level of hCA I on the extracellular medium.41,55 Moreover, high level of extracellular hCA I in both blood-retinal and blood-brain barrier can induce vasogenic edema.55 Again, Chang \textit{et al.} observed a significative increased expression of hCA I in the synovial membrane in patients affected by ankylosing spondylitis (SA), a condition characterized by bone formation and resorption of chronic inflammmated joints.56,57 The role of hCA II has been demonstrated in several diseases, such as glaucoma, edema, epilepsy and, probably, altitude sickness.58 hCA III is involved in the oxidative stress, characterizing a lot of inflammatory diseases. It is not yet understood whether this feature is due to the CO\textsubscript{2} hydration activity of hCA III (which is quite low), or to other enzyme properties, such as a different enzymatic activity or the presence of Cys residues on its surface, responsible for the antioxidant effects of this protein.59 hCA IV is surely a drug target for several pathologies, including glaucoma (together with hCA II and XII), retinitis pigmentosa and stroke.60 The mitochondrial isoforms hCA VA and VB are targets suited for obtaining antiobesity agents,61 whereas hCA VI is implicated in cariogenesis.62 hCA IX and XII are well-established anticancer drug targets because they have been found to be overexpressed in epithelial tumors including tumours of the cervix, lungs, kidneys, prostate, breast, as well as in neuroblastoma.42,63 In addition, these isoforms are implicated in allowing tumors to acclimate to a hypoxic microenvironment and promoting metastasis.64 Furthermore, these isoforms can also be used for imaging of hypoxic tumors.63a,65 Although hCA XII is less investigated, it is also investigated as a putative antitumor target.63a,66
2.1.5 Classical CAs Inhibitors (CAIs)

Two main classes of CAIs are known: a) the metal complexing anions, which add to the metal coordination sphere (Scheme 2.2, figure A) generating a trigonal-bipyramidal adduct, and b) the unsubstituted aromatic sulfonamides, which bind to the Zn\(^{2+}\) ion of the enzyme by substituting the nonprotein zinc ligand (Scheme 2.2, figure B). In the case of sulfonamides, in addition to the Zn\(^{2+}\) coordination, an extended network of hydrogen bonds ensues, involving residues Thr199 and Glu106, whereas the aromatic part of the inhibitor interacts with hydrophilic and hydrophobic residues of the cavity within the active site. For anionic inhibitors such as thiocyanate (A) the interactions between inhibitor and enzyme are much simpler.\(^67\)

Scheme 2.2 Mechanisms of inhibition of carbonic anhydrase.

Regarding the metal complexing anions, they are aspecific for the different isozymes, and their reduced structure limits the possibility of their optimization in order to obtain selective CAIs. Conversely, sulfonamide
moieties show a strong affinity for the Zn$^{2+}$ ion of Cas in comparison to the firsts, and the presence of the aromatic part of these inhibitors make sulfonamides to be useful for the drug design of more potent and selective CAIs.

In the course of the last years, several structure-activity-relationships (SAR) studies combined with X-ray crystallographic data led to identify a general binding mode of the sulfonamide CAIs, which can be schematized as a structure bearing three main moieties (Fig. 5):42,68 1) the pharmacophoric motif that binds zinc ion in the active site (i.e., the Zinc Binding Function, ZBF), which is fundamental for the inhibitory activity; 2) an aromatic scaffold, which ensures the appropriate positioning of the ZBF in the active site and stabilizes the enzyme–inhibitor complex interacting with the hydrophobic/hydrophilic residues of the active site; 3) a high variable tail, almost always located in pseudo-para or meta position with respect to the ZBF, which is responsible for secondary interactions that confer better stability and high affinity to the enzyme–ligand complex.

![Fig. 5 General structure of CAIs.](image)

Although sulfonamide CAIs have been clinically used for decades and constitute the most investigated chemical classes of inhibitors (Fig. 6), they still possess many undesired side effects, mainly due to their lack of selectivity for the different CA isozymes.40a,69

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Fig. 6 Examples of sulfonamides CAIs used in therapy (inhibition constant against hCA II).

As more CAIs are entering clinical trials, due to both the toxicity and relative non-specificity of the sulphonamide-like functionality, it is important to develop diverse chemical classes of selective inhibitors.
2.2 Rational: work plan

In this scenario, the CA drug design is focused on the development of new inhibitors that combine adequate inhibitory activity and selectivity to specific isoforms, with lower toxic effects than classical CAIs. Developing isozyme-specific CAIs should be highly beneficial in obtaining novel classes of drugs devoid of various undesired side-effects. This could be obtained by developing:

- alternative chemical classes of sulfonamide-CAIs;
- CAIs bearing different zinc binding function.

One of the first attempts to optimize pharmacological properties of sulfonamide-CAIs through the replacement of the sulfonamide pharmacophores led to the development of different sets of bioisosters (e.g., derivatives belonging to the sulfamate or sulfamide families) with often indistinguishable properties from sulfonamides. It means that this type of alternative ZBF groups showed the same behavior towards CA isozymes, without showing an interesting selectivity.

For this reason efforts are being made to find novel and original CAIs, in order to explore molecular diversities and to discover original pharmacophores.

In spite of this, to identify novel inhibitors that selectively inhibit specific isoform, and to develop hit/lead compounds able to interfere with CA ‘orphan’ targets, such as the hCA I, as well as hCA IX, and hCA XII, involved in tumour progression, we decided to focus our attention to the following strategies (Fig.7):
- use *click chemistry* as a powerful synthetic approach for generating inhibitors belonging to the sulfonamide class;

- structural optimization of *hits* compounds previously identified, bearing original pharmacophoric groups, alternative to sulfonamides.

Fig. 7 Adopted strategies.

In the following subchapters of this thesis the starting points of each project and the consequent developments are described. The first subchapter reports the “click” approach used for the synthesis of the two model compounds, 6a and 6b (**Fig.7**), and the investigation of the binding modes within the enzyme active site obtained by their cocrystallization with *hCA II*.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
The second subchapter details the identification of the *hit* compound 7 (Fig. 7), an original structure bearing a trifluorodihydroxypropanone moiety, and the strategy adopted for its biological optimization.

The third subchapter describes the discovery and development of the *lead compound* 8 (Fig. 7), which presents a pyrazole-carboxylic acid motif, and its pharmacobiological optimization.

Finally, the last subchapter discusses on the synthetic approach used for the structural expansion of the hit compound 9 (Fig. 7), identified as representative model carrying a benzoaborole scaffold.

2.3 Click Chemistry as powerful tool for generating CAIs

“Click chemistry” has extensively been used to obtain inhibitors of the metallo-enzyme carbonic anhydrase belonging to the sulfonamide class. Recently, “thiol-ene click chemistry” has been successfully employed to obtain CA inhibitors of the sulfonamide type, which again had excellent inhibitory activity against the tumor-associated isoforms hCA IX and XII.

Among click techniques, the copper-catalyzed azide-alkyne cycloaddictions (CuAAC) have acquired a prominent role due to their modularity, the short reaction times, and increased yields. By exploiting the high reactivity of aromatic/heterocyclic sulfonamides incorporating azide/alkyne moieties which were reacted with alkynes/azides, a large number of compounds possessing a variety of chemotypes, difficultly available by other procedures, were synthesized and the obtained compounds were assayed as inhibitors of many mammalian CA isoforms of the 16 presently known. For example, sulfonamides incorporating glycosyl moieties (both protected...
and deprotected at the OH groups of the sugar) of type C, E and F,70 as well as a heterocyclic or aromatic groups (Scheme 2.3), have been obtained, many of which showed excellent inhibitory activity against physiologically/pathologically relevant isoforms such as \(hCA \) I, II, IX and XII72.

\textbf{Scheme 2.3} Sulfonamides obtained via click-chemistry.

Thus, click chemistry is a powerful tool for generating both chemical diversity as well as novel applications for targeting tumours, based on inhibitors of various CA isoforms with medicinal chemistry applications.

As far as the features to be considered in drug design and discovery process are concerned, fluorine atom has demonstrated several properties that make it extremely attractive, particularly in the biological optimization.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
process. These characteristics include (a) the small atomic size and the length of the C–F bond, which make fluorine a putative substitute of the hydrogen, without affecting significantly on the molecular geometry; (b) the high electronegativity that induces substantial changes of the physicochemical properties of the molecules (i.e., change in the lipophilicity, decrease of the pKa, and ability to act as H-bond acceptor). Indeed, fluorine atoms are able to alter, often drastically, the binding mode, the affinity, and the selectivity of the molecule for the respective target. For example, perfluorination of benzenes dramatically increases the acidity of substituents.

In this context, the Sechi’s group used the click-tailing approach for the synthesis of two homologous series of 4-(R-1H-1,2,3-triazol-1-yl)benzenesulfonamides I and 2,3,5,6-tetrafluoro-4-(5-R-1H-1,2,3-triazol-1-il)benzenesulfonamide II incorporating a large variety of different moieties (Fig. 8).

![Fig. 8](image)

The new compounds were medium potency inhibitors of the cytosolic CA isoforms I and II and low nanomolar/subnanomolar inhibitors of the tumor associated hCA IX and XII isoforms.
In order to understand the factors governing inhibitory potency, two representative compounds (6a and 6b, Fig. 9) have been selected among the series and were synthetized by using the click approach. In particular compound 6a was 10.9 times more effective as hCA II inhibitor compared to the congener 6b (K_I = 41.3 nM and 450 nM, for 6a and 6b, respectively). Also, these two compounds resulted the most and the less potent hCA IX inhibitors of the fluorinated compounds of the series (K_I = 1.5 nM and 115 nM, for 6a and 6b, respectively).

Then, two X-ray crystal structures of these compounds in adduct with hCA II have been solved in collaboration with Prof. McKenna of University of Florida.

![Fig.9 Selected compounds.](image)

2.3.1 Chemistry

The preparation of the perfluorinated key intermediate 12 started from pentafluorobenzenesulfonyl chloride 10, which was converted to the corresponding sulfonamide 11 by reaction with concentrated aqueous ammonia. Since the 4-fluoro atom is the most reactive one for nucleophilic substitution reactions, it has been replaced by the azido moiety, as depicted in scheme below:
The synthesis of the selected compounds 6a,b was achieved by reacting the azides 12 (incorporating the sulfamoyl zinc-binding group ZBG) with alkynes 13a,b in the presence of nanosized metallic copper as catalyst (Scheme 2.5).

2.3.2 X-ray crystallography

The crystal structures of hCA II in complex with sulfonamides 6a and 6b have been determined (Fig. 10) to 1.5 Å resolution. The structures were solved using protocols as previously described (see Table S1 and details in Experimental Section).
The hydrophobic nonplanar compounds were found buried deep into the active site, displacing the catalytic zinc-bound solvent, such that the nitrogen of the sulfonamide group binds directly to the zinc atom of CA II (distance ≈ 2.0 Å). Hence, the overall Zn coordination can be described as a distorted tetrahedron. The O atom of the site displaces the catalytic zinc-bound solvent, such that the nitrogen of the sulfonamide group binds directly to the zinc atom of hCA II (distance ≈ 2.0 Å). Hence, the overall Zn coordination can be described as a distorted tetrahedron. The O atom of the sulfonamide group lied within hydrogen bonding distance (2.9 Å) from the backbone N atom of Thr 199. The tetrafluorophenyl moiety of the inhibitors was stabilized by the surrounding hydrophobic residues (Val121, Leu141, and Leu198) and also exhibited van der Waals interactions with the side chains of Asn62, His64, Gln92, His94, Phe131, and Pro202. However, as the compounds extend out of the active site (Fig. 10A), their tail groups became less ordered, with weaker density seen for the tails in the difference map (Fo–Fc) for both compounds. Hence, different

Fig. 10 (A) Surface representation of hCA II in complex with 6a (green) and 6b (pink) extending out of the active site. (B) Zoomed active site details. Figure was made using PyMOL.
orientations were modeled, and the one that best satisfied the observed data was selected as the final refined structure. The nonpolar, puckered cyclohexyl ring in \(\text{6a} \) was found in the hydrophobic pocket lined by residues Phe131, Val135, Pro202, and Leu204 (Fig. 10A). Again, the tail of \(\text{6b} \) was observed to be orientated toward the bulk solvent, not being involved in any hydrophobic or polar interactions with the surface of the protein. Compounds \(\text{6a} \) and \(\text{6b} \) bury a total surface area of 394.3 Å\(^2\) (75.0\% of its total area) and 328.5 Å\(^2\) (67.1\% of its total area) with the protein interface and have average B-factors of 18.3 and 19.7 Å\(^2\), respectively.\(^{74}\)

2.3.3 Conclusions

The copper-catalyzed azide-alkyne cycloaddictions (CuAAC) has been successfully employed to obtain CA inhibitors of the sulfonamide type. The X-ray crystal structure of two such sulfonamides in adduct with \(h\text{CA II} \) provided insights to understand the factors governing inhibitory activities. Overall, the interactions between the model compounds \(\text{6a} \) and \(\text{6b} \) with \(h\text{CA II} \) are consistent with those seen with the classical, clinically used sulfonamide CAIs.\(^{75}\) Although \(\text{6b} \) was 10.9 times less effective as a \(h\text{CA II} \) inhibitor compared to the cyclohexylmethyl substituted congener \(\text{6a} \) (\(K_I \text{6a} =41.3 \) nM and \(K_I \text{6b} =450 \) nM), both compounds accommodate similarly within the enzymatic active site. Thus, structural modifications in the aromatic tail dramatically influence the inhibition potency, without affecting the interaction within the amino acid binding pocket within the catalytic site.
2.4 Development of a novel class of CAIs containing a trifluorohydroxy propanone pharmacophore

In 2011 the Sechi’s group in collaboration with Dr. Supuran of the University of Florence, and Dr. Andrea Brancale of the Cardiff University, indentified novel CAIs carrying an original pharmacophore through a combined ligand- and pharmacophore-based virtual screening approaches. The key points of the experimental strategy were the following:

- the construction of a suitable pharmacophore model, using a four-point pharmacophore, which consisted by the classical ZBF as metal ligator, two H-bond acceptor functions, and an aromatic hydrophobic region (Fig. 11);

![Figure 11: Pharmacophore model represented into the active site. Schematic view and distance geometries of the pharmacophore functions (rectangular insert).](image-url)
the virtual screening of free database of commercially available compounds by means of docking procedures;
- the study of the poses on \(hCA\) II enzyme model of the most interesting selected compounds.

Among these, one compound bearing a trifluoro-dihydroxy-propanone moiety (Fig. 12, compound 7) showed anti-CA II activity in the low micromolar concentration range (Ki \(hCA\) II = 9 \(\mu\)M, Table 4), as predicted by the docking studies. Interestingly, compound 7 (commercially available) resulted approximately 45-fold more active in inhibiting the human CA II isoform with respect to CA I (Ki \(hCA\) II = 9 \(\mu\)M vs Ki \(hCA\) I = 410 \(\mu\)M), thus demonstrating similar specificity toward \(hCA\) II isoform as compared to reference compound acetazolamide (Ki ratios = 45 and 75, for 7 and AZA, respectively).

![Fig. 12](image)

Table 4 Inhibition of \(hCA\) isoforms I and II by compound 7 in comparison with acetazolamide (AAZ; 5-acetamido-1,3,4-thiadiazole-2-sulfonamide) as standard, by a stopped-flow CO\(_2\) hydrase assay.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(K_i (\mu\text{M})^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(hCA) I</td>
</tr>
<tr>
<td>7</td>
<td>410</td>
</tr>
<tr>
<td>AAZ</td>
<td>0.90</td>
</tr>
</tbody>
</table>

* Errors in the range of ± 5-10% of the reported value from 3 different assays.
It has also been hypothesized that 7 could be involved in complexation with the Zn2+ ion, through the deprotonated dihydroxy system. This putative binding mode has been supported by docking studies, which evidenced an accommodation within the CA active site already demonstrated by sulfonamide-containing compounds. Presumably, the electron-withdrawing character of the trifluoro-group present on the pharmacophore fragment might contribute in enhancing the acidity of germinal diol, thus favouring its metal chelating properties.

Fig. 13 Proposed binding mode of compound 7

Since the inhibition values of compound 7 fall into the average hit potency values for all VS studies (range from 4 to 19 \(\mu \text{M} \)),77 these fulfill the criteria for a useful hit, which must exceed a specific potency threshold against the target (e.g., <10 \(\mu \text{M} \) inhibition).78
Due to the chemical originality of this new pharmacophore, compound 7 has been proposed as an important bioisosteric alternative to the sulfonamido-based functionalities, thus leading to the development of a new class of CAIs.

2.4.1 Objectives

Like a sulfonamide-based CA inhibitor, compound 7 presents three main components schematized by an aromatic scaffold, in which is located the ZBF (the trifluoro dihydroxy propanone moiety), and a tail constituted by a methyl group as a substituent in para position (Fig. 14).

Fig. 14 Schematic structure of hit compound 7.

To improve the inhibition profile of the hit compound 7, a series of its derivatives has been designed and synthesized, in order to evaluate the potency towards CA II, as well as that toward other human CA isozymes. Meanwhile, selected derivatives will be crystallised into the target proteins to elucidate their accommodation within the enzyme active site.
In particular, the nature of the tail on the aromatic scaffold of the hit compound 7 has been modified by sequential chemical change by a) increasing or decreasing the length of the carbon chain, b) modifying the steric bulk of alkyl substituents (also considering the molecular simplification by synthetizing the analogue without methyl group in \textit{para} position), c) insertion of electron donating group as substituent on aromatic scaffold, d) planning a structure extension (Fig. 15):

![Fig. 15](image)

A set of the designed compounds belonging to the series \textbf{III} is reported in Figure 16:
2.4.2 Chemistry

A suitable synthetic route for the preparation of the compound 7 and its derivatives has been planned by a multistep synthesis, through a logical approach for disconnecting a complex target molecule via retrosynthetic analysis.

From the literature analysis of the trifluoro dihydroxy propanone moiety of the model compound 8, it emerged that water adds rapidly to the carbonyl function of aldehydes and ketones to give geminal diols. The hydration reaction is catalyzed by acids and bases, with a reversible mechanism, and the diol can eliminate water to regenerate the aldehyde or ketone. Anyway, the presence of an electron-withdrawing group as substituent in the starting material 14 (as CF₃ in our case) favors the hydrate form 15 (Scheme 2.6).
Moreover, the insertion of the trifluoroacetyl group on the starting material 14 could be made using the trifluoroacetyl anhydride agent by well-known procedures79 (Scheme 2.7):

\textbf{Scheme 2.7}

\begin{align*}
\text{HO\textsubscript{CF\textsubscript{3}}} \text{OH} &\quad \rightleftharpoons \quad \text{R CF\textsubscript{3}CO} \\
15 &\quad \rightleftharpoons \quad \text{F\textsubscript{3}COCO} + \text{R}^+ \\
14 &
\end{align*}

A method for obtaining the compound 7 and some its derivatives was developed in 1988 by Kamitori80 through a synthetic approach based on the abovementioned observations. The work described the multistep synthesis of trifluorodihydroxy propanone 7, as depicted the Scheme 2.8:
In the first step, the reaction between p-tolualdehyde and N,N'-dimethyl hydrazine in benzene at room temperature occurs, with the consequent formation of the p-tolualdehyde N,N'-dimethylhydrazone (Scheme 2.8, intermediate 17a).

Hydrazone is a nitrogen analogue of enamines, and some hydrazones are known to behave as 1,3-dipolar compounds in which the azomethine carbon is a center of nucleophilic attack. However, there are few reports of simple electrophilic substitution at the azomethine carbon, but none involving acylation of this carbon. The Kamitori’s paper reports on the electrophilic acylation of aldehyde hydrazones using 2,6-lutidine as base to deprotonate hydrazone (Scheme 2.9).
The work also reports that the acid hydrolysis of the intermediate 18a with 5N H$_2$SO$_4$ at 25°C should lead to the formation of the 1,2-diketones. Otherwise, microanalytical data suggested 7 to be monohydrates in which the carbonyl group far from aromatic ring should be hydrated (Scheme 2.10).

This available synthetic method, used for the preparation of compound 7 has been also tested with variously substituted aromatic aldehydes to give the designed trifluorodydroxy propanone derivatives reported in the serie III.

To obtain the formation of hydrazones (17b-f), benzene has been replaced with dichloromethane as solvent when performing the reaction with solid biphenyl 4-carboxaldehyde, and without using solvent when conducting
the reaction with liquid aldehydes miscible with N,N'-dimethyl hydrazine (as for benzaldehyde, and 4-isopropyl/methoxy/butyl benzaldehyde).

Scheme 2.11

![Scheme 2.11](image)

Regarding the acetylation step, the reaction has been carried out in dichloromethane instead of chloroform, as described in Kamitori’s procedures. The optimized parameters to achieve the desired intermediates are shown in **Table 5**.

Table 5

16b $R = H$	17b $R = H$
16c $R = iPr$	17c $R = iPr$
16d $R = OMe$	17d $R = OMe$
16e $R = Bu$	17e $R = Bu$
16f $R = Ph$	17f $R = Ph$

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
Concerning the acid hydrolysis of trifluoroacetylated hydrazones with 5N H$_2$SO$_4$, the procedure works well at room temperature in almost all examples (yielding derivatives of series III in the range of 59-82%, Fig.17), with the exception if IIIe, which needs of heating at 60°C for 24 hours (Fig.17, 85% yield).

![Fig. 17](image_url)

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>TFAA (equiv.)</th>
<th>2,6-lutidine (equiv.)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18b</td>
<td>2</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>18c</td>
<td>4</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>18d</td>
<td>10</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>18e</td>
<td>6</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>18f</td>
<td>7</td>
<td>4</td>
<td>89</td>
</tr>
</tbody>
</table>

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
2.4.3 Biological assays

The connection between carbonic anhydrase and cancer is known from approximately fifteen years, since two tumor-associated transmembrane carbonic anhydrase isoforms (hCA IX and hCA XII) have been identified, cloned and sequenced. These isoforms, in fact, are expressed in a wide variety of malignancies and appear to be tightly regulated by microenvironmental hypoxia.83 hCA IX expression is linked to poor prognosis in a number of human tumors, and it is an established marker of aggressive malignant phenotype and involved in the mechanism of progression.84 Inhibition of CA IX with sulfonamide- and/or coumarin-based inhibitors was recently shown to lead to a potent retardation for the growth of both primary tumors and metastases.85

In contrast to hCA IX, hCA XII is expressed in a variety of normal human tissues including kidney, colon, prostate, pancreas, ovary, testis, lung, and brain, but its expression appears up-regulated in tumors compared to the corresponding normal tissues.86 hCA IX and hCA XII are thus emerged as suitable targets for both diagnostic and therapeutic intervention, particularly on the management of hypoxic tumors normally non-responsive to classical chemio- and radiotherapy.85

In this context, hit compound 7 and its derivatives were tested for their ability to inhibit the catalytic activities of tumor associated hCA IX and XII isoforms, in addition to the the cytosolic CA isoforms I and II. Such enzymatic activities were measured by a stopped-flow technique (Table 6, see details in Experimental Section).
Table 6 Inhibition of hCA isoforms I, II, IX and XII with compounds of the series III, and acetazolamide (AAZ; 5-acetamido-1,3,4-thiadiazole-2-sulfonamide), used as standard, by a stopped-flow CO$_2$ hydrase assay.

<table>
<thead>
<tr>
<th>Compound</th>
<th>hCA I (µM)</th>
<th>hCA II (µM)</th>
<th>hCA IX (µM)</th>
<th>hCA XII (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>410</td>
<td>9.0</td>
<td>0.84</td>
<td>9.05</td>
</tr>
<tr>
<td>IIIa</td>
<td>Ph</td>
<td>54.3</td>
<td>63.5</td>
<td>4.51</td>
</tr>
<tr>
<td>IIIb</td>
<td>4-iPr-C$_6$H$_4$</td>
<td>86.0</td>
<td>>100</td>
<td>0.80</td>
</tr>
<tr>
<td>IIIc</td>
<td>4-MeO-C$_6$H$_4$</td>
<td>520</td>
<td>3.2</td>
<td>0.83</td>
</tr>
<tr>
<td>IIId</td>
<td>4-nBu-C$_6$H$_4$</td>
<td>17.3</td>
<td>4.7</td>
<td>0.78</td>
</tr>
<tr>
<td>IIIe</td>
<td>4-Ph-C$_6$H$_4$</td>
<td>65.7</td>
<td>2.5</td>
<td>5.60</td>
</tr>
<tr>
<td>AAZ</td>
<td>-</td>
<td>0.25</td>
<td>0.012</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Errors in the range of ± 5-10 % of the reported value from 3 different assays.

Surprisingly, the hit compound 7 showed an interesting inhibitory activity in submicromolar/high nanomolar range against hCA IX (Ki 0.84 µM), also demonstrating overlapping activity toward CA II and CA XII (Ki s ~9 µM of 7 in both isozymes). As summarized in Table 6, with the exception of IIIa and IIIe, all compounds selectively inhibited hCA IX, with Ki values ranging from 0.78 to 0.83 µM, independently from the nature of substituent in the aromatic scaffold. Preliminary SAR indicate that the tail tolerates derivatization with various aliphatic moieties, while complete removal of the substituents (in IIIa) or insertion of bulkier group (in IIIe) appeared detrimental.
2.4.4 Molecular Modelling

A preliminary molecular modelling study was conducted in collaboration with Roberto Dallocchio and Alessandro Dessì (ICB-CNR, Sez. Sassari), in order to simulate the binding mode of compounds belonging to this new class inhibitors within the active site of hCA IX. Interactions between hCA IX and the hit compound 7, as well as hCA IX with all members of series III (III a-e) have been predicted by docking experiments using AutoDock 4.2.5, and the coordinates for hCA IX-mimic protein (PDB code: 3IAI) were used for computational docking.

Figures 18 and 19 show that all derivatives are deeply buried into the catalytic pocket of hCA IX, where the first oxygen of the diol group makes an H-bond with Thr199, while the second oxygen interacts with the zinc ion, thus corroborating the hypothesis that the trifluoromethyl-dihydroxy propanone group could be a suitable bioisostere of the sulfonamide group.
Fig. 18 AutoDock predicted binding modes for ligands (*hit* compound 7 and series III) in hCA IX protein. Ligands are in sticks, overall protein (blue) comprising binding pocket (violet) is represented as surface, and zinc ion is depicted as orange sphere.

Fig. 19 Zoomed view of docked ligands into the binding pocket.
The main differences in terms of binding modes are referred to \(\text{IIIa} \) and \(\text{IIle} \), the less active derivatives toward \(h \text{CA IX} \).

In particular, the aromatic ring of \(\text{IIIa} \) is rotated of 180° with respect to those of the others ligands (Fig. 19, green sticks). This mobility is probably due to the absence of a tail on the aromatic scaffold, necessary to establish interactions within the aminoacid pocket, and this orientation may have a negative effect on the activity of this compound.

Concerning the compound \(\text{IIle} \), its structural rigidity and molecular expansion introduced by the biphenyl group can also affect the achievement of a favorable position in the catalytic site (Fig. 19, blue sticks), thus leading to a decreasing in the activity.

2.4.5 Conclusions and perspectives

In this subchapter is reported the synthesis, biological evaluation and preliminary molecular modeling study of a novel class of CAIs bearing a trifluorodihydroxypropanone moiety (series \(\text{III} \)). With the exception of \(\text{IIIa} \) and \(\text{IIle} \), all compounds selectively inhibited \(h \text{CA IX} \), with \(K_i \) values ranging from 0.78 to 0.83 \(\mu \text{M} \), independently of the nature of substituent on the aromatic scaffold.

Some representative compounds have been selected to be crystallized with the target protein to obtain useful information to direct further structural and biological optimization.

These results show that this new class of CAIs possess strong inhibitory effects against \(h \text{CA IX} \) and may be used as a platform for the development of potential anticancer agents.
2.5 Synthesis of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives as CAIs

Since the discovery of CAIs with peculiar selectivity for each CA isozyme is of paramount importance, in 2012 Sechi’s group87 in collaboration with Dr. Supuran of the University of Florence, made a major effort in identifying novel and original CAIs, endowed with selectivity against relatively unexplored CA targets such as \(hCA \) I.

The outline of the experimental strategy was the following:

- throughput screening on in-house chemical library of about 150 compounds, built by choosing aromatic/heteroaromatic backbones carrying carboxylic/carboxylate functionalities as bioisosteric alternative to the sulfonamido-based functionalities;
- intensive inhibition study against the main cytosolic/transmembrane carbonic anhydrase isoforms \(hCA \) I, II, IX and XII, and identification of putative hit compounds.

In particular, the \(5-(1\text{-ethyl}-1H\text{-indol-3-yl})-1H\text{-pyrazole-3-carboxylic acid} \) \textbf{8} (Fig. 20) proved to be the most potent and selective compound tested toward \(hCA \) I isoform \((K_i = 0.042 \mu M) \), with a very high \(hCA \) I versus \(hCA \) II selectivity \((K_i = 1829 \mu M \text{ for } hCA \text{ II, SI, selectivity index } > 40,000) \), without it significantly affects the catalytic activities of the other isozymes. Due to its selectivity index between CAs, compound \textbf{8} shows a potential therapeutic window.

\textit{Roberta Cadoni}

\textit{Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors}

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
This compound represents the first prototype of CAIs targeting the hCA I isoform, carrying an original pharmacophore, able to selectively interfere with such isozyme in nanomolar concentration range. Interestingly, computational simulations suggested that compound 8 can meet desirable ADME criteria and favorable pharmacokinetic properties for further development (Table 7).

<table>
<thead>
<tr>
<th>Compound</th>
<th>MW</th>
<th>HBA</th>
<th>HBD</th>
<th>Rbond</th>
<th>cLogP<sup>a</sup></th>
<th>miLogP<sup>b</sup></th>
<th>TPSA<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>255.3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3.65</td>
<td>2.397</td>
<td>70.916</td>
</tr>
</tbody>
</table>

Abbreviations: MW, molecular weight; HBA, number of hydrogen bond acceptors; HBD, number of hydrogen bond donors; Rbond, number of rotatable bonds; cLogP, log octanol–water partition coefficient; miLogP, logP prediction based on group contributions; TPSA, topological polar surface area.

^a Parameters calculated by ChemDraw Ultra 2005.
^b Parameters calculated by miLogP 2.2 method implemented in Molinspiration Cheminformatics 2012 software.
^c Parameters calculated by Molinspiration Cheminformatics 2012.

Concerning the CA inhibition mechanism, the heteroaryl-pyrazole carboxylic acids could interact with the Zn²⁺ involving their carboxylate...
functionalities, similarly to sulfonamides and related inhibitors, as revealed by X-ray in co-crystals of hCA II with other carboxylates.88

For the mentioned reasons, compound 8 can represent a novel promising lead compound for the development of potent and selective hCA I inhibitors.

The synthetic approach for the preparation of 8 started with the alkylation reaction of 3-acetyl indole 19 (Scheme 2.12) with bromoethane and KOH in anhydrous DMSO at room temperature, to afford the N-ethyl-3-acetyl indole 20a. This intermediate undergoes Claisen condensation with diethyl oxalate in the presence of freshly prepared sodium methoxide to provide compound 21a, which, as in the case of the analogous β-diketo acids, was found to exist predominantly in the keto-enol form.89

The next step resulted on the cyclization of the diketoester 21a to pyrazol ring 22 using hydrazine monohydrate in isopropyl alcohol and glacial acetic acid, as previously reported.90 Then, compound 8 was obtained by alkaline hydrolysis with 20% NaOH of heteroaryl-pyrazole ester 22.

Scheme 2.12 reports the synthetic route for the preparation of 8.
2.5.1 Objectives

According with the rational of the project, this specific topic was focused on the structural optimization of the lead compound 8, in order to generate a new series of 3-(1H-indol-3-yl)pyrazole-5-carboxylic acids, with improved inhibition profile.

In particular, pharmacomodulation of 8 should be addressed:

- to improve affinity towards hCA I, and to define the pharmacophoric motif endowed with the activity;
- to test the activity of these heteroaryl-pyrazole carboxylic acid derivatives toward a panel of isozymes (hCA I, hCA II, h CA IX, and hCA II);
- to obtain solved co-crystal structures with few representative derivatives with the target proteins (i.e., hCA II and hCA IX mimic.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
enzymes), to acquire useful details about the binding modes of these compounds within the CA catalytic site.

In this direction, major modifications of 8 have been made by varying the substituents in the nitrogen atoms both on the indole and pyrazole rings, as well as by esterification of the carboxylic functionality (Fig. 21).

Fig. 21

![Diagram of compound 8 with modifications for lead optimization and esterification](image)

A set of the designed compounds (series IV) is depicted in Fig. 22.

Fig. 22 a) General chemotype of title compounds. b) Designed compounds of the series IV.
2.5.2 Chemistry

Compounds IVa, IVd-g of series IV were synthesized by using the above mentioned synthetic procedure, starting from the 3-acetyl indole 19.

The first step was the alkylation reaction of 19 with the appropriate alkyl bromide to obtain the N-alkyl-3-acetyl-indole derivatives 20a-c (Scheme 2.13).

Scheme 2.13

Robert Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carboxylic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
These intermediates were then reacted with diethyl oxalate in the presence of sodium methoxide in MeOH, to provide the analogous β-diketo esters 21a-c (Scheme 2.14), which were found to exist in the keto-enol form. In fact, 1H-NMR experiments showed a singlet centered at about 6.87 ppm (6.87 for compounds 21a,b, 6.89 for 21c) attributable to the enolic CH of the hydroxy-keto motif.89

Scheme 2.14

![Scheme 2.14](image)

The β-diketoesters 21a-c were treated with hydrazine monohydrate to generate the pyrazole derivatives IVa, IVd and IVf in appreciable yields (46-93%, Scheme 2.15).

Scheme 2.15

![Scheme 2.15](image)
Then, the acids IVe and IVg were obtained by alkaline hydrolysis of the esters IVd and IVf (Scheme 2.16).

Scheme 2.16

\[
\text{Scheme 2.16}
\]

\[
\begin{align*}
\text{IVd} & \quad R = \text{Bu} \\
\text{IVf} & \quad R = \text{iPr}
\end{align*}
\]

Compounds IVb and IVc, containing a N-CH₃ on the pyrazole ring, were synthesized starting from IVa, following the synthetic route reported in the Scheme 2.17. Briefly, the intermediate IVa was converted to IVb by alkylation of the pirazole nitrogen with CH₃I in the presence of NaH (Scheme 2.17).⁹⁰ Compound IVc was then obtained from IVb by alkaline hydrolysis with 20% NaOH in ethanol at reflux (Scheme 2.17).

Scheme 2.17

\[
\begin{align*}
\text{IVa} & \quad \text{NaH 60%oil dispersion, CH₃I, DMF, } 0^\circ\text{C}\rightarrow\text{r.t.} \\
\text{IVb} & \quad 39\% \\
\text{IVc} & \quad 64\%
\end{align*}
\]
2.5.3 Biological assays

As previously explained, considering the abnormally high expression of \(h\text{CA IX} \) and \(h\text{CA XII} \) in different hypoxic tumors and their demonstrated role in the tumor acidification processes and oncogenesis, these isoforms constitute potential targets for anticancer therapy. Thus, agents that can inhibit \(h\text{CA IX} \) and \(h\text{CA XII} \) activity may have therapeutic value and offer opportunities for the prevention and/or treatment of a variety of cancers. For these reasons these heteroaryl-pyrazole carboxylic acid derivatives (series IV) were tested for their ability to inhibit IX and XII \(\alpha \)-isoforms, in addition to \(h\text{CA I} \) and \(h\text{CA II} \).

Catalytic activities were measured by a stopped-flow technique, as previously described (Table 8, see details in Experimental Section).

Table 8. Inhibition of \(h\text{CA} \) isoforms I, II, IX and XII with carboxylic acids and esters of series IV, and acetazolamide (AAZ; 5-acetamido-1,3,4-thiadiazole-2-sulfonamide), methazolamide (MZA; \(N\)-[5-(aminosulphonil)-3-methyl-1,3,4-thiadiazol-2(3H)-ilydene]acetamide), dichlorophenamide (DCP; 4,5-dichlorobenzene-1,3-disulphonamide) as standard by a stopped-flow \(\text{CO}_2 \) hydrase assay.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(K_i (\mu M))</th>
<th>(h\text{CA I})</th>
<th>(h\text{CA II})</th>
<th>(h\text{CA IX})</th>
<th>(h\text{CA XII})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVa</td>
<td>4.31</td>
<td>6.95</td>
<td>0.47</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>IVb</td>
<td>0.62</td>
<td>0.41</td>
<td>3.02</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>IVc</td>
<td>6.61</td>
<td>0.78</td>
<td>2.91</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>IVd</td>
<td>5.93</td>
<td>0.53</td>
<td>7.90</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>IVe</td>
<td>5.33</td>
<td>4.70</td>
<td>4.51</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>IVf</td>
<td>6.45</td>
<td>0.76</td>
<td>7.36</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>
Although structural modifications of the lead compound 8 reduced the potency and selectivity against hCA I isoform (work is in progress to clarify the behavior), this new class of compounds showed an interesting selectivity toward hCA XII, with K_i values ranging from 0.21 to 0.57 µM (Table 8). This biological profile appeared to be independent from the nature of substituents on indole and pyrazole ring. Furthermore, no relevant differences could be observed between acids and esters (Table 8).

Among the tested compounds, compound IVf ($K_i = 0.21$ µM) proved to be the most active compound in inhibiting the hCA XII isoform.

2.5.4 Molecular Modelling

A preliminary molecular modelling study on this new class of CAIs was conducted to better understand binding geometries and the interactions of these compounds within the catalytic site. Graphical representations of top-ranking binding modes obtained for these ligands are depicted in Figure 23.

Results of docking experiments within the active site of hCA XII (PDB code: IJD0) share a common binding pattern for all ligands, thus confirming that

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_i (µM)</th>
<th>K_{ij} (µM)</th>
<th>K_{ij} (µM)</th>
<th>K_{ij} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVg</td>
<td>4.83</td>
<td>0.70</td>
<td>18.9</td>
<td>0.28</td>
</tr>
<tr>
<td>AAZ</td>
<td>0.25</td>
<td>0.012</td>
<td>0.025</td>
<td>0.006</td>
</tr>
<tr>
<td>MZA</td>
<td>0.78</td>
<td>0.014</td>
<td>0.027</td>
<td>0.034</td>
</tr>
<tr>
<td>DCP</td>
<td>1.2</td>
<td>0.038</td>
<td>0.050</td>
<td>0.050</td>
</tr>
</tbody>
</table>

* Errors in the range of ± 5-10 % of the reported value from 3 different assays.
the carboxylate group is involved in metal binding with the metal cofactor (Fig. 23).

It should be also noted that no relevant differences in binding modes could be observed between acids and esters, being they able to chelate the Zn ion in the same way.

Fig. 23. Superimposition of the best binding pose of compounds IVa-g. Ligands are depicted as yellow sticks with the exception of IVd (shown in cyan). The target structure was represented by molecular surface and cartoons (rendered in light-gray), and Zn$^{2+}$ is depicted as orange sphere. Figure was prepared using MacPyMol.

On the other hand, not satisfactory docking results were obtained for IVd, since the docking program failed in generating a consistent binding mode for this ligand. This behavior could be explained by considering that this ligand well accommodates into the binding pocket, but in opposite orientation with respect to those of the other compounds.
In this context, the carboxylate group does not readily engage in a correct bridging mode for metal ion coordination, and this may have a negative effect on the activity of this compound.

Thus, with the exception of IVd, for all ligands the two coplanar oxygen atoms of the carboxylate functionality are involved in metal chelation of the divalent ions (Fig. 24).

Fig. 24. Comparison of the best docking pose for compounds 8 and IVa-g. Colors code of Fig. 23 was preserved together with the side chains of relevant residues (shown as white sticks). Figure was prepared using MacPyMol.
2.5.5 Conclusions and perspectives

According with the rational of the project, this subchapter was focused on the structural optimization of the lead compound 8, in order to generate a new series of compounds bearing a 3-(1H-indol-3-yl)pyrazole-5-carboxylic acid scaffold (series IV).

All tested compounds selectively inhibited hCA XII, with K_i values ranging from 0.21 to 0.57 µM, independently from the nature of substituents on indole or pyrazole ring. Among the tested compounds, IVf ($K_i = 0.21$ µM) resulted the most potent hCA XII inhibitor, which could provide structural determinants for the development of novel anticancer agents.

2.6 Preliminary evaluation of antiproliferative activity for representative compounds of series III and IV

The putative effect of inhibition of CA activity (particularly of hCA IX and/or XII) demonstrated by compounds of the series III and IV on the viability of three human cancer cell lines (hormone-independent prostate cells, PC-3; human embryonic kidney, HEK 293 cells; human neuroblastoma cells, SH-SY5Y) was evaluated by MTS colorimetric assay, in collaboration with Dr. Ciro Iaccarino, University of Sassari.

First, HEK 293 cells were treated for 24 hours with compounds 7, IIIa, IIIId, 8, IVf, IVg, and IVa, at diverse inhibitor concentrations (Fig.25). At the end of 24 hours of exposure, no significative antiproliferative effect has been detected at the 1 µM, 10 µM, 30 µM, and 100 µM concentration exposure, with the exception of IIIId and IVf, which exhibited cell growth inhibition of
about 50% and 70% (for IIld and IVf, respectively) after treatment with 100 μM concentration.

Fig 25. Antiproliferative activity of some representative compounds of series III and IV on human renal HEK 293 cells at various concentration assessed by percentage of cell viability after 24 hours.

Similar results are found when the same compounds were tested in PC-3 cells (Fig. 26). In fact, with the exception of IVf, none of the trifluoromethyl-dihydroxy propanone derivatives demonstrated significative cytotoxicity. It could be speculated that this cell line is more susceptible to inhibition of hCA XII than hCA IX. However, differences in physicochemical properties for these compounds should also be considered.
Fig 26. Antiproliferative activity of some representative compounds of series III and IV on humane prostate PC-3 cells at various concentration assessed by percentage of cell viability after 24 hours.

In the third experiments (**Fig.27**), treatment of the same compounds on SH-SY5Y cell lines, after 48 hours exposure, displayed an overlapping behavior, with appreciable cytotoxicity effect for IVf and IIId at µ100 M concentration.

Fig 27. Antiproliferative activity of some representative compounds of series III and IV on human neuronal SH-SY5Y cells at various concentration, assessed by percentage of cell viability after 48 hours.
Because *h*CA IX and *h*CA XII were predicted to be involved in tumor processes related to the hypoxic phenomena, compound IVf was further investigated for its antiproliferative potency in neuroblastoma cells at different concentrations of inhibitor (1-100 µM) both in normal and in simulated hypoxic condition (Figure 28). This experimental model has been planned by adding cobalt(II) chloride, a known chemical inducer of hypoxia-inducible factors in several cell lines. Interestingly, from the analysis of the results, it emerged that the addition of CoCl₂ significantly increased the susceptibility of the cells to the treatment with IVf, showing a reduction of cell viability of about 25%. Of course, the implication of CA XII on the growth inhibition mechanism should be better investigated.

Figure 28. Antiproliferative activity of IVf on human neuronal SH-SY5Y cells (measured by percentage of cell viability after 48 hours) at various concentration was assessed in normal (cyan) and in simulated hypoxic (green) conditions, after 2 hours of exposure to MTS).

In summary, preliminary cytotoxicity evaluation on three different cancer cell lines was performed *in vitro* using MTS colorimetric assay. Among the tested compounds, IVf displayed the best cell growth inhibitory toward all.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
cell lines. Moreover, an improved antiproliferative effect was observed for IVf when tested in simulated hypoxia conditions, as expected by considering the putative involvement of hCA XII inhibition.

2.7 Synthesis of potential CAIs carrying a benoxaborole scaffold

2.7.1 Introduction

Unsubstituted benoxaborole 9 (Fig. 29), generally named as 1,3-dihydro-1-hydroxy-2,1-benoxaborole, consists of a benzene ring fused with an oxaborole heterocycle:

Fig. 29 Benoxaborole structure.

In the past fifty five years, the applications of benoxaboroles covered various fields, exemplified by organic synthesis, glycopeptides recognition and supramolecular chemistry. Compared with corresponding arylboronic acids or other compounds, benoxaboroles show exceptional properties. All boronic acids, with their empty p-orbitals, are Lewis acids where the neutral form adopts a trigonal planar geometry while the conjugate base is tetrahedral with the negative charge formally localized on the boron atom itself. This addition of water with the accompanying loss of a proton is responsible for their acid/base properties.
Scheme 2.18 pKa of benzoxaborole compared to that of phenylboronic acid.

Consequently, benzoxaboroles have better solubility in water at physiological pH compared with phenylboronic acids. A good solubility in physiological pH required for clinical drug candidates is one of the drug-like properties.93

The stability of the benzoxaborole core allows modifications under various reaction conditions. For instance, benzoxaborole ring could be nitrated with fuming nitric acid to obtain 6-nitrobenzoxaborole, which can subsequently be reduced to 6-aminobenzoxaborole under hydrogen in the presence of catalysts (Scheme 2.19, a).94 Moreover, it can be oxidized with CrO\textsubscript{3} without any damage of the scaffold (Scheme 2.19, b).86 Again, this heterocycle can be heated to reflux for 6 hours under 6 mol/L NaOH (Scheme 2.19, c).95 Furthermore, it can tolerate concentrated hydrochloric acid or reduction with lithium aluminum hydride (Scheme 2.19, d).96
Part of the reason arises from the benoxaboroles unique chemical properties, especially in comparison to their acyclic boronic acid counterparts. Furthermore, the low bio-toxicity combined with the high target specificity associated with benoxaboroles make them very attractive as therapeutic agents.93a

2.7.2 Benoxaborole scaffold in drug design

Many of the applications of benoxaboroles in molecular recognition involve the development of improved carbohydrate sensors. Benoxaboroxoles, in fact, are known to bind 1,2-diol motifs in...
carbohydrates in an aqueous environment. In 2010 Hall’s group97 applied his discovery of efficient saccharide binding by benzoxaboroles to the construction of a peptidyl bis-benzoxaborole library that would be used as a synthetic receptor. The receptor was targeted against a disaccharide unit (Gal-b-1,3-GalNAc) that is found on the surface of many tumor cells, the Thomsen-Friedenreich (TF) antigen. The best candidate (Fig. 30) exhibited high selectivity for TF-antigen with a Kd 0.9 mM, similar to the values reported with some naturally-occurring lectins.

Material scientists have also begun to take advantage of the high affinity of benzoxaboroles for sugars and other diols under neutral aqueous conditions. In 2012 Liu and co-workers98 have reported a method to append benzoxaboroles to the surface of a monolithic capillary column for the chromatographic separation of various diols. 6-carboxy-benzoxaborole was used to functionalize methylene bisacrylamide/glycidyl methacrylate polymer capillary monoliths via amide bond formation (Fig. 31). The columns prepared provided efficient chromatographic separation of a variety of nucleosides as well as efficient retention of model glycoproteins.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
at neutral pH. These columns may also be useful in the selective enrichment of nucleosides and glycosylated proteins.

Fig. 31 Benzoxaborole incorporated for affinity chromatography on monolithic capillary.

As far as the medicinal chemistry field is concerned, benzoxaboroles have emerged as a novel class of small molecule therapeutic agents, with a rapidly growing number of literature examples reporting their diverse potential applications, many of which are actively being explored by pharmaceutics. Small modifications to the benzoxaborole structure can lead to potent therapeutic candidates for various human diseases, including fungal, bacterial, and viral infections, inflammation, cancer, and even for drug delivery.

Benzoxaboroles also offer new opportunities for treating other important and often neglected diseases. SAR screening has shown that many benzoxaboroles are potent inhibitors of *T. brucei* LeuRS, making them

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
promising new antitrypanosomal agents.100 Guided by the knowledge of the *T.vbrucei* LeuRS active site structure, a series of 6-substituted benzoxaboroles were designed and found to exhibit low μM IC_{50} values for *T. brucei* LeuRS. Among them, SCYX-7158 (\textbf{Fig. 32}) exhibited desirable drug-suitability traits in pre-clinical studies, and it is currently in Phase I clinical trial.101

\textbf{Fig. 32}

![SCYX-7158](image)

Malaria is a mosquito-borne infectious disease of humans and other animals caused by parasitic protozoans of the *Plasmodium* type. Several benzoxaboroles with 7-carboxyethyl substituents have been reported to have very potent antimalarial properties with IC_{50} values in the nM concentration range.102 It is demonstrated that the boron atom is absolutely essential for the antimalarial effect, and replacing boron with carbon leads to the loss of inhibition. In particular AN3661 (\textbf{Fig. 33}, IC_{50} 44 nM) is being currently developed as a new treatment for malaria.101

\textbf{Fig. 33}

![AN3661](image)

\textbf{Roberta Cadoni}

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
Again, a series of phenoxy-substituted benzoxaboroles was found to exhibit good phosphodiesterase 4 (PDE4) inhibition. PDE4 is responsible for catalyzing the breakdown of 3',5'-adenosine cyclic monophosphate (cAMP) and it is ubiquitously expressed in inflammatory cells. Inhibition of PDE4 function has been shown to suppress the activity of human inflammatory cells, making PDE4 an attractive target for fighting various inflammatory diseases, such as asthma, chronic obstructive pulmonary disease, inflammatory bowel disease, and psoriasis.\(^{93a}\) AN2728 (Fig. 34) is among the most effective compounds identified for this purpose. It has passed Phase II clinical trials for topical treatment of psoriasis and atopic dermatitis.\(^{101}\)

Fig. 34

\[
\text{AN2728}
\]

To summarize, benzoxaboroles have been proven to be a unique class of compounds with very distinct chemical reactivity from acyclic aryl boronic acids. The diverse utility of benzoxaboroles has only been recognized recently, and they have already been utilized for detecting biomolecules and for treating various health issues. The most exciting aspect of benzoxaboroles’ therapeutic potential is that they are very safe and thus provide a novel therapeutic pharmacophore for use against diseases where resistance is emerging to existing approaches.
2.7.3 Benzoxaborole as potential CAI

In this context the attention has been focused on benzoxaborole scaffold as an alternative chemotype to develop a new class of CAIs.

In particular, benzoxaborole 9 (Fig. 29) was recently tested on some α-CA isozymes and demonstrated interesting inhibition potency against hCA I and hCA II ($K_i = 648$ nm against hCA I, $K_i = 642$ nm against hCA II). No inhibition was observed against the isozymes hCA IX and hCA XII. Preliminary X-ray crystallographic data of the benzoxaborole/hCA II adduct seems to predict a binding mode in the active site where the B-OH hydroxyl group binds to the zinc ion in a tetrahedral geometry.103

These preliminary results showed the benzoxaborole moiety as an original pharmacophoric group in the CAIs drug discovery. This compound represents a novel promising lead structure suitable of chemical modification and consequent biological optimization. In this scenario, part of the project was addressed to synthesize a library of benzoxaborole derivatives, substituted on the C-6 aryl position, in order to improve the biopharmaceutical profile of the starting model compound (Fig. 35).

Fig. 35 Benzoxaborole functionalization.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
2.7.3.1 Design of synthetic plan for benzoxaborole derivatives

A good strategy to synthesize benzoxaboroles derivatives is to start from the 6-amino benzoxaborole (6-aminobenzo[c][1,2]oxaborol-1(3H)-ol) \(24 \).

Compound \(23 \) was synthesized according to literature,\(^{94,104} \) starting with the nitration of the commercially available 1,3-dihydro-1-hydroxy-2,1-benzoxaborole (9) in position 6 with fuming nitric acid (important to use nitric acid with a concentration of 90% for this reaction) at \(-45\) °C and followed by hydrogenation over palladium on carbon in acetic acid–tetrahydrofuran at room temperature under atmospheric pressure (Scheme 2.18).

Scheme 2.18 Synthetic approach.

6-Amino benzoxaborole \(24 \) was obtained as a foamy orange solid and characterized by \(^1\)H and \(^{13}\)C NMR in \(d^6\)-DMSO, and ESI-MS. In particular, a broad singlet at \(\delta = 9.05 \), a singlet at 4.90, and a singlet at 4.81 were assigned to the \(\text{NH}_2 \), \(\text{BOH} \), \(\text{BOCH}_2 \) and protons, respectively.

The amino group in the 6 position could be well suited to derivatize the benzoxaborole structure by reacting \(24 \) with a series of isocyanates and isothiocyanates to obtain two different sets of \(N,N'\)-disubstituted ureas and thioureas (Fig.36).

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
2.7.3.2 Synthesis of a series of \(N,N' \)-disubstituted ureas

The investigation began by treating 6-amino benzoxaborole 24 (1 equiv.) with phenyl isocyanate (25a, 1 equiv.) in acetone at room temperature. When 6-amino benzoxaborole was consumed, petroleum ether was added to the mixture, and a precipitate was filtered. The crude solid was washed with methanol to afford the desired product 26a as a solid with a yield of 42% (Scheme 2.19).

After that, the methodology has been tested with an array of commercially available aromatic isocyanates 25b-j, and the method provided the desired ureas in moderate yields (Scheme 2.20, 26b-j 23-46%).

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
2.7.3.3 Synthesis of a series of N,N'-disubstituted thioureas

On the base of these encouraging results, the method has been tested on various commercially available aromatic isothiocyanate to obtain a series of N,N'-disubstituted thioureas. The procedure started by treating 6-amino benzoxaborole 24 (1 equiv.) with 4-methoxy phenyl isothiocyanate $27a$ in acetone at room temperature (Table 9, entry 1). After 1 hour the formation of the new product $28a$ was not observed. Moreover, no...
product formation was observed when performing the reaction overnight (Table 9, entry 2). For this reason the mixture reaction was refluxed, and after about 2 hours the reaction was completed, leading to the expected product with a 15% yield (Table 9, entry 3). In order to find the optimum reaction, the reaction was carried out by increasing the equivalents of 4-methoxy phenyl isothiocyanate. Better result were observed using 1.2 equiv. of isothiocyanate (Table 9, entry 4-5).

Table 9 Synthesis of N,N′-disubstituted thioureas: optimization of the reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound 27a (equiv)</th>
<th>Temp. (°C)</th>
<th>Time (hours)</th>
<th>Yield on 7 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>r.t</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>r.t</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>50</td>
<td>2,5</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>50</td>
<td>2,5</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>1.3</td>
<td>50</td>
<td>2,5</td>
<td>25</td>
</tr>
</tbody>
</table>

In the following table are shown both the different derivatives synthetized (using the optimized parameters and the different isothiocyanates 27a-j) and the relatives yields (Table 10, 28a-j):

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
Table 10 Series of \(N,N' \)-disubstituted thioureas.

![Diagram of thioureas](image)

2.7.3.4 Characterization of the compounds

All the synthesized compounds were characterized by \(^1\)H and \(^{13}\)C NMR in \(\text{d}^6 \)-DMSO, and ESI-MS. In general, \(N,N' \)-disubstituted ureas showed the characteristic proton signal at about 4.90 ppm and carbon signal at about 69 ppm assigned as the \(\text{BOCH}_2 \), and carbon signal at 140 ppm assigned as...
NHCONH (not always observed). N,N’-disubstituted thioureas shared a similar pattern, with the signals at about 4.96 ppm and at about 69 ppm, for proton and carbon, respectively, assigned as BOCH₂, as well as the carbon signal centered at 184 ppm, assigned as NHCSNH (difficult to be detected). All the ESI-MS data showed the [M+1]⁺ ion.

2.7.3.5 Enzyme assays

N,N’-disubstituted thioureas 28a-j have been tested for the inhibition of two transmembrane cancer-associated isoforms, hCA IX and XII (Table 11). Data for the inhibition of the dominant human isoforms hCA I and II with these compounds are also included in Table 11, for comparison reasons.

Table 11. Inhibition of hCA isoforms I, II, IX and XII with benzoxaborole 9 and N,N’-disubstituted thioureas 28a-j, and acetazolamide (AAZ; 5-acetamido-1,3,4-thiadiazole-2-sulfonamide), methazolamide (MZA; N-[5-(aminosulphonil)-3-methyl-1,3,4-thiadiazol-2(3H)-ilydene]acetamide), dichlorophenamide (DCP; 4,5-dichlorobenzene-1,3-disulphonamide) as standard by a stopped-flow CO₂ hydrase assay.

<table>
<thead>
<tr>
<th>Compound</th>
<th>hCA I</th>
<th>hCA II</th>
<th>hCA IX</th>
<th>hCA XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>648</td>
<td>642</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28a</td>
<td>514</td>
<td>1250</td>
<td>490</td>
<td>79.4</td>
</tr>
<tr>
<td>28b</td>
<td>548</td>
<td>1148</td>
<td>436</td>
<td>76.1</td>
</tr>
<tr>
<td>28c</td>
<td>639</td>
<td>1547</td>
<td>42.0</td>
<td>67.7</td>
</tr>
<tr>
<td>28d</td>
<td>355</td>
<td>1500</td>
<td>336</td>
<td>88.7</td>
</tr>
<tr>
<td>28e</td>
<td>532</td>
<td>1625</td>
<td>94.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>
In general, almost all the \(N,N' \)-disubstituted thioureas showed an interesting inhibitory profile in nanomolar/micromolar concentration range. In particular, with the exception of \(28c \) and \(28h \), all compounds demonstrated a certain selectivity against \(h \text{CA} \text{XII} \). Moreover, some compounds of the series (ie, \(28c-h \)) also displayed inhibition constants in the range of 42.0-94.0 nM toward \(h \text{CA IX} \).

From the structural point of view, it emerges that the derivatization of benzoxaborole 9 via the formation of thioureas \(28a-j \) represents a key feature for the selectivity towards isoforms \(h \text{CA IX} \) and \(h \text{CA XII} \). It should be remarked that these derivatives share a selective profile towards the transmembrane isoforms \(h \text{CA IX} \) and \(h \text{CA XII} \) rather than to the cytosolic isoforms \(h \text{CA I} \) and \(h \text{CA II} \).

It is worth noting that the compounds \(28g \) and \(28j \) proved to be the most potent and selective compounds tested toward \(h \text{CA XII} \) isoform (\(K_{\text{I}} = 42.4 \) nM and 42.4 nM, for \(28g \) and \(28j \), respectively), being comparable with

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28f</td>
<td>417</td>
<td>1838</td>
<td>92.9</td>
<td>71.2</td>
</tr>
<tr>
<td>28g</td>
<td>385</td>
<td>>10000</td>
<td>84.1</td>
<td>48.6</td>
</tr>
<tr>
<td>28h</td>
<td>318</td>
<td>1253</td>
<td>77.2</td>
<td>611</td>
</tr>
<tr>
<td>28i</td>
<td>258</td>
<td>2230</td>
<td>912</td>
<td>90.7</td>
</tr>
<tr>
<td>28j</td>
<td>380</td>
<td>1305</td>
<td>610</td>
<td>42.4</td>
</tr>
<tr>
<td>AAZ</td>
<td>250</td>
<td>12</td>
<td>25</td>
<td>5.7</td>
</tr>
<tr>
<td>MZA</td>
<td>780</td>
<td>14</td>
<td>27.0</td>
<td>3.4</td>
</tr>
<tr>
<td>DCP</td>
<td>1200</td>
<td>38</td>
<td>50.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

* Errors in the range of \(\pm \) 5-10% of the reported value from 3 different assays.
that clinically used sulfonamide DCP (Table 11). Moreover, these compounds exhibited a selectivity ratios CA XII/CA II of ~205 and ~30.7, for 28g and 28j, respectively, whereas the selectivity for the clinical used standard drugs (AAZ, MZA and DCP) resulted in the range of 0.36-4.11, calculated for the same isozymes.

Furthermore, compound 28c showed inhibitory activity against the transmembrane cancer-associated isoform hCA IX ($K_I = 42.0 \text{ nM}$), with selectivity ratios CA IX/CA II of 36.8, whereas the inhibition potency against the other enzymes resulted 67.7 nM (for CA XII), 639 nM (for CA I), and 1547 nM (for CA II). 28c demonstrated a significant selectivity compared to that of the clinical used standard drugs (AAZ, MZA and DCP), which resulted in the range of 0.33-0.76 (Table 11).

2.7.3.6 Work in progress

All N,N'-disubstituted ureas are currently under investigation for their inhibition profile against an extended panel of CAs.

Moreover, selected N,N'-disubstituted ureas and N,N'-disubstituted thioureas will be crystallized with the target protein with the hope that detailed knowledge of the binding of the compounds to the active site can be used to direct further structural and biological optimization.
2.8 General conclusions

Enzyme inhibition is one important issue for drug design and pharmacological applications. In this context, to identify novel CAIs that selectively inhibit specific isoforms, and to develop hit/lead compounds able to interfere with CA ‘orphan’ targets, such as the hCA I, as well as isoforms involved in hypoxic tumors (ie, hCA IX and hCA XII), tiolene-click chemistry has been successfully employed as a powerful synthetic approach for generating inhibitors belonging to the sulphonamide class. Moreover, pharmacomodulation of previously identified hits compounds bearing original pharmacophoric groups, as well as novel chemical scaffold, have been performed in order to improve and to better investigate their biopharmaceutical profile. Some of the synthesized derivatives showed interesting inhibitory activity against the tumor-associated CAs, hCA IX and hCA XII, providing new chemical platforms for the development of novel anticancer agent.

We hope that these findings can contribute on the development of novel and effective CAIs suitable of clinical use.
EXPERIMENTAL SECTION

General Experimental Procedures.

Anhydrous solvents and all reagents were purchased from Sigma-Aldrich, Merck or Carlo Erba and used without further purification. All reactions involving air- or moisture-sensitive compounds were performed under a nitrogen atmosphere using oven-dried glassware and syringes to transfer solutions. Melting points (m.p.) were determined using an Electrothermal melting point or a Köfler apparatus and are uncorrected. Analytical thin-layer chromatography (TLC) was carried out on Merck silica gel F-254 plates. Flash chromatography purifications were performed on Merck Silica gel 60 (230-400 mesh ASTM) as the stationary phase and column chromatography was performed on silica gel (pore size 60 Å, 40-63 µm particle size). NMR spectra were recorded at 27 °C on Bruker Avance III nanobay 400 MHz (400 MHz for 1H and 101 MHz for 13C, 376 MHz for 19F) or Varian NMR spectrometer VXR-300MHz (at 300 MHz for 1H and 75.4 MHz for 13C) by using SiMe$_4$ as internal standard; the assignment of exchangeable protons (OH and NH) was confirmed by the addition of D$_2$O. Elemental analyses were performed by using a Perkin-Elmer Elemental Analyzer 2400-CHN. LC-MS were recorded with a Absciex 4000 QTRAP LC-MSMS system. High-resolution mass spectra (HMRS) were obtained from an ESI-MS spectrometer (SYNAPT G- of Waters).
EXPERIMENTAL SECTION: CHAPTER I

General procedure for the synthesis of amides:

Appropriate amine (0.5 mmol, 1 equiv.) was added to a solution of N-chlorosuccinimide (0.55 mmol, 1.1 equiv.) in acetonitrile (7 mL) under nitrogen atmosphere and the solution was stirred at room temperature for about 3 hours. Then, the appropriate aldehyde (2.5 mmol, 5 equiv.), TBHP (2.5 mmol, 5 equiv., 0.34 mL of a 70 wt% in water) and Cu(OAc)$_2$H$_2$O (14 mol%) were added under nitrogen atmosphere. The reaction mixture was refluxed for about 50 min. The progress of reaction was monitored by TLC until disappearance of N-chloroamine. Then the reaction mixture was quenched with 40 mL of a saturated solution of Na$_2$SO$_3$ (for removal of excess TBHP) and extracted with diethyl ether. The organic layer was dried over anhydrous Na$_2$SO$_4$ and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to provide the pure amide.

\[\text{4a} \]

N,N-Dibenzylheptanamide105

Coloress oil.

Yield: 76 %.

$R_f : 0.47$ (ethyl acetate : petroleum ether = 92:8).
1H NMR 300 MHz (CDCl$_3$): δ 7.40-7.15 (overlapping, 10H, ArH), 4.60 (s, 2H, CH$_2$), 4.44 (s, 2H, CH$_2$), 2.42 (t, J = 7.53 Hz, 2H, CH$_2$), 1.77-1.67 (overlapping, 2H, CH$_2$), 1.38-1.27 (overlapping, 6H), 0.87 (t, J = 7.23 Hz, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 173.7, 137.5, 136.7, 128.9, 128.5, 128.2, 127.5, 127.2, 126.3, 49.8, 48.0, 33.2, 31.5, 29.0, 25.3, 22.4, 14.0.

IR (film): $\tilde{\nu}$ = 2928 (m), 1644 (s), 1494 (w), 1453 (m), 1265 (m), 1206 (w), 1078, (w) 736 (s), 699 (m).

Elemental analysis: C$_{21}$H$_{27}$NO. Calculated C 81.51 H 8.79, N 4.53 Found: C 81.45 H 8.83, N 4.48.

![4b](image)

1-Morpholinoheptan-1-one106

Pale yellow oil.

Yield: 63%.

R_f : 0.40 (ethyl acetate : petroleum ether = 1:1).

1H NMR 300 MHz (CDCl$_3$): δ 3.69-3.47 (overlapping, 6H, ArH), 3.47 (t, J = 5.11 Hz, 2H), 2.32 (t, J = 7.89 Hz, 2H), 1.64-1.57 (m, 2H, CH$_2$), 1.33-1.27 (overlapping, 6H), 0.89 (t, J = 7.01 Hz, 3H).

13C NMR 75 MHz (CDCl$_3$): δ 171.9, 66.9, 66.6, 46.0, 41.9, 33.1, 31.5, 29.1, 25.2, 22.4, 13.9.
IR (film): ν̃=2928 (m), 2858 (m), 2637 (m), 1637 (s), 1457 (m), 1435 (m), 1266 (s), 1115 (s), 1069 (w), 1039 (w), 910 (m), 850 (w), 736 (s), 702 (w), 665 (w).

![4c](image)

N-benzyl-N-isopropyl-2,2-dimethylpropanamide

Pale yellow oil.

Yield: 65 %.

Rf : 0.33 (ethyl acetate : petroleum ether = 16:84).

¹H NMR 300 MHz (CDCl₃): δ 7.41-7.21 (overlapping, 5H, ArH), 5.43 (s, 1H, CH), 4.67 (s, 1H, CH), 4.10-3.99 (m, 1H, CH), 1.24-1.11 (overlapping, 15H, CH₃).

¹³C NMR 75 MHz (CDCl₃): δ 177.8, 129.4, 128.6, 127.2, 126.4, 41.3.

IR (film): ν̃=3051 (m), 2998 (w), 2938 (s), 2857 (s), 1633 (s), 1442 (s), 1369 (w), 1351 (s), 1277 (s), 1237 (m), 1174 (m), 1127 (m), 110 (s), 1088 (s), 1026 (m), 1001 (s), 954 (m), 885 (s), 838 (s), 734 (s), 701 (m), 662 (w), 626 (w).

Elemental analysis: C₁₅H₂₃NO. Calculated C 77.21, H 9.93, N 6.00 Found: C 77.23, H 9.88, N 6.04.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
N-benzyl-N,3,3-trimethylbutanamide

Pale yellow oil.

Yield: 71 %.

Rf: 0.40 (ethyl acetate : petroleum ether = 9:1).

1H NMR 300 MHz (CDCl$_3$): δ 7.39-7.14 (overlapping, 5H, ArH), 4.59 (d, $J = 11.43$ Hz, 2H, CH$_2$), 2.94 (s, 3H, CH$_3$), 2.32 (s, 2H, CH$_2$), 1.09 (s, 5H, CH$_3$), 1.07 (s, 4H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 172.4, 172.0, 137.8, 136.9, 128.9, 128.5, 128.1, 127.5, 127.2, 126.3, 54.0, 50.7, 44.9, 44.7, 35.9, 33.8, 31.6, 31.4, 30.04, 30.00.

IR (film): ν̃=3063 (w), 3029 (w), 2953 (s), 2866 (m), 1645 (s), 1477 (m), 1453 (m), 1387 (m), 1363 (m), 1254 (w), 1233 (w), 1192 (w), 1106 (s), 1028 (w), 1001 (w), 953 (w), 735 (w).

Elemental analysis: C$_{14}$H$_{21}$NO. Calculated C 76.67, H 9.65, N 6.39 Found: C 76.73, H 9.61, N 6.43.

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
N-cyclohexyl-N,2-dimethylbenzamide

White solid.

M.p. 49-51 °C.

Yield: 67 %.

Rf : 0.37 (diethyl ether : petroleum ether = 8:2).

1H NMR 300 MHz (CDCl$_3$): δ 7.24-7.12 (overlapping, 4H), 2.99 (s, 3H), 2.64 (s, 3H, CH$_3$), 1.78-0.99 (overlapping, 10H, CH$_2$).

13C NMR 75 MHz (CDCl$_3$): δ 171.3, 171.0, 137.7, 137.2, 133.9, 133.5, 130.3, 130.2, 128.4, 125.9, 125.7, 125.5, 125.1, 58.1, 52.0, 31.2, 30.6, 29.8, 26.8, 25.6, 25.1, 19.0, 18.6.

IR (film): ν̃= 2928 (s), 2855 (m), 1632 (s), 1492 (w), 1449 (m), 1403 (m), 1403 (m), 1367 (w), 1322 (m), 1258 (w), 1186 (w), 1137 (w), 1113 (w), 1061 (m), 1040 (w), 997 (w), 894 (w), 770 (m), 728 (m), 656 (w), 640 (w), 617 (w).

Elemental analysis: C$_{15}$H$_{21}$NO. Calculated C 77.88, H 9.15, N 6.05. Found C 77.89, H 9.11, N 6.09.

N,N-dibenzyl-4-methoxybenzamide

White solid.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
M.p. 120-122 °C.

Yield: 70 %.

R_f : 0.29 (diethyl ether : petroleum ether = 8:2).

1H NMR 300 MHz (CDCl$_3$): δ 7.48 (d, $J = 8.50$ Hz, 2H, ArH), 7.38-7.20 (overlapping, 10H), 6.88 (d, $J = 8.81$ Hz, 2H, ArH), 4.67 (br s, 2H, CH$_2$), 4.48 (br s, 2H, CH$_2$), 3.80 (s, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 172.1, 160.7, 136.9, 128.7, 128.5, 128.2, 127.5, 127.0, 113.8, 55.0, 50.9, 47.1.

IR (film): $\tilde{\nu}$ = 3062 (w), 2923 (s), 2852 (m), 1631 (s), 1513 (m), 1494 (m), 1452 (s), 1421 (s), 1363 (w), 1301 (m), 1174 (m), 1143 (w), 1078 (m), 1031 (m), 993 (m), 923 (w), 840 (s), 734 (s), 700 (s).

Elemental analysis: C$_{22}$H$_{21}$NO$_2$. Calculated C 79.73, H, 6.39, N, 4.23. Found: C 79.67, H 6.35, N 4.19.

![4g](image)

3,5-dimethoxy- N-pentylenzamide108

Pale yellow oil.

Yield: 73 %.

R_f : 0.30 (ethyl acetate : petroleum ether = 2:8).
1H NMR 300 MHz (CDCl$_3$): δ 6.87 (d, $J = 2.29$ Hz, 2H, ArH), 6.56 (t, $J = 2.28$ Hz, 1H, ArH), 6.13 (br s, 1H, NH), 3.81 (s, 6H, CH$_3$), 3.45-3.39 (m, 2H, CH$_2$), 1.62-1.55 (m, 2H, CH$_2$), 1.37-1.32 (m, 4H, CH$_2$), 0.90 (t, $J = 7.25$ Hz, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 167.5, 161.1, 137.4, 105.0, 103.5, 55.7, 40.3, 29.5, 29.3, 22.6, 14.2.

IR (film): $\tilde{\nu}$ = 2957 (m), 2930 (m), 2857 (m), 1639 (m), 1593 (s), 1541 (m), 1457 (m), 1426 (m), 1348 (m), 1266 (w), 1206 (s), 1157 (s), 1065 (m), 926 (w), 842 (w), 738 (m), 702 (w).

![Diagram of 4h](image)

N-(4-Nitrobenzoyl)piperidine

White solid.

M.p. 119-120 °C.110

Yield: 95 %.

Rf : 0.32 (ethyl acetate : petroleum ether = 4:6).

1H NMR 300 MHz (CDCl$_3$): δ 8.26 (d, $J = 8.63$ Hz, 2H, ArH), 7.54 (d, $J = 7.53$ Hz, 2H, ArH), 3.72 (s, 2H, CH$_2$), 3.28 (s, 2H, CH$_2$), 1.70 (s, 4H, CH$_2$), 1.52 (s, 2H, CH$_2$).
13C NMR 75 MHz (CDCl$_3$): δ 168.1, 148.2, 142.7, 127.8, 123.8, 48.6, 43.2, 26.5, 25.5, 24.4.

IR (film): ν = 3055 (w), 2924 (m), 2857 (m), 1633 (s), 1600 (m), 1523 (s), 1444 (s), 1351 (s), 1276 (s), 1106 (m), 1001 (m), 888 (w), 862 (m), 850 (m), 826 (w), 736 (s).

Elemental analysis: C$_{12}$H$_{14}$N$_2$O$_3$. Calculated C 61.53, H 6.02, N 11.96. Found: C 61.48, H 6.07, N 11.89.

$\textit{N-(4-Chlorobenzoyl)piperidine}^{101}$

Pale yellow oil.

Yield: 97%.

Rf: 0.32 (ethyl acetate : petroleum ether = 1:9).

1H NMR 300 MHz (CDCl$_3$): δ 7.39-7.32 (overlapping, 4H, ArH), 3.68 (s, 2H, CH$_2$), 3.33 (s, 2H, CH$_2$), 1.67-1.53 (overlapping, 6H, CH$_2$).

13C NMR 75 MHz (CDCl$_3$): δ 169.0, 135.2, 134.7, 128.5, 128.2, 48.6, 43.2, 29.5, 25.6, 24.4.

IR (film): ν = 2936 (s), 2855 (s), 1630 (s), 1439 (s), 1276 (s), 1088 (m), 1016 (m), 1001 (m), 885 (m), 838 (m).

Elemental analysis: C$_{12}$H$_{14}$ClNO. Calculated C 64.43, H 6.31, N 6.26. Found C 64.39, H, 6.35, N, 6.29.

\begin{center}
\textbf{Roberta Cadoni}
\end{center}

\textit{Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors}

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Methyl 4-(morpholine-4-carbonyl)benzoate111

White solid.

M.p. 73-75 °C.

Yield: 82 %.

Rf : 0.36 (ethyl acetate : petroleum ether = 7:3).

1H NMR 300 MHz (CDCl\textsubscript{3}): δ 8.09 (d, J = 8.14 Hz, 2H, ArH), 7.48 (d, J = 8.15 Hz, 2H, ArH), 3.94 (s, 3H, CH\textsubscript{3}), 3.79-3.93 (ovelapping, 8H, CH\textsubscript{2}).

13C NMR 75 MHz (CDCl\textsubscript{3}): δ 169.3, 166.1, 139.5, 131.3, 129.8, 127.0, 66.7, 52.2, 42.4.

IR (film): ν~ = 2955 (w), 2856 (w), 1720 (s), 1633 (s), 1507 (w), 1433 (s), 1362 (w), 1278 (s), 1180 (m), 1156 (w), 1114 (s), 1067 (m), 1014 (m), 962 (w), 895 (m), 895 (w), 865 (w), 842 (w), 824 (w), 785 (m), 726 (m).

Elemental analysis: C\textsubscript{13}H\textsubscript{15}NO\textsubscript{4}. C 62.64, H 6.07, N 5.62. Found: C 62.61, H6.11, N 5.58.

\textbf{1-(4-(Morpholine-4-carbonyl) phenyl) ethanone}112

\begin{center}
\includegraphics[width=0.2\textwidth]{image.png}
\end{center}

\textbf{Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors}

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
White solid.

M.p. 96-98 °C.

Yield: 82 %.

Rf : 0.38 (ethyl acetate : petroleum ether = 8:2).

1H NMR 300 MHz (CDCl$_3$): δ 8.01 (d, $J = 8.52$ Hz, 2H, ArH), 7.50 (d, $J = 8.51$ Hz, 2H, ArH), 3.79-3.41 (overlapping, 8H, CH$_2$), 2.63 (s, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 197.4, 169.5, 139.9, 138.2, 128.8, 127.5, 67.0, 29.9, 26.9.

IR (film): $\tilde{\nu}$ = 2922 (m), 2854 (m), 1716 (m), 1685 (s), 1532 (s), 1507 (w), 1458 (m), 1432 (m), 1402 (w), 1360 (m), 1300 (m), 1 262 (s), 1157 (w), 1114 (s), 1068 (w), 1024 (m), 1011 (m), 959 (w), 913 (m), 838 (m), 732 (s), 647 (w).

Elemental analysis: C$_{13}$H$_{15}$NO$_3$. C, 66.94, H, 6.48, N, 6.00. Found: C, 66.91, H, 6.43, N, 6.04.

![4l](image_url)

N,N'-Dibenzylthiophene-2-carboxamide

White solid.

M.p. 48-50 °C.
Yield: 73%.

$R_f: 0.30$ (ethyl acetate : petroleum ether = 1:9).

1H NMR 300 MHz (CDCl$_3$): δ 7.45 (d, $J = 5.04$ Hz, 1H, ArH), 7.38-7.26 (overlapping, 11H, ArH), 6.95 (t, $J = 3.70$ Hz, 1H, ArH), 4.72 (s, 4H, CH$_2$).

^{13}C NMR 75 MHz (CDCl$_3$): δ 165.0, 137.7, 136.6, 129.3, 128.8, 128.6, 127.6, 126.9, 50.

IR (film): \tilde{v} = 3029 (m), 2921 (m), 1616 (s), 1521 (m), 1494 (m), 1452 (m), 1428 (s), 1363 (m), 1253 (s), 1203 (w), 1076 (w), 1027 (w), 975 (m), 910 (w), 854 (m), 734 (s), 698 (s).

Elemental analysis: C$_{19}$H$_{17}$NOS. C, 74.23, H, 5.57, N, 4.56. Found: C, 74.26, H, 5.54, N, 4.59.

N,N-Dibenzylbenzamide97

White solid.

M.p. 114-115 °C.

Yield: 75 %.

$R_f: 0.24$ (diethyl ether : petroleum ether = 92:8).
Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery:

and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari

1H NMR 300 MHz (CDCl$_3$): δ 7.51-7.48 (overlapping, 2H, ArH), 7.37-7.28 (overlapping, 11H, ArH), 7.14-7.12 (s, 2H, ArH), 4.70 (s, 2H, CH$_2$), 4.40 (s, 2H, CH$_2$).

13C NMR 75 MHz (CDCl$_3$): δ 172.2, 136.2, 129.5, 128.7, 128.4, 127.5, 126.9, 126.6, 51.4, 46.8.

IR (film): $\tilde{\nu}$ = 3061 (m), 3029 (m), 2923 (m), 1634 (s), 1577 (w), 1495 (s), 1451 (s), 1421 (s), 1363 (m), 1307 (m), 1264 (s) 1204, (w) 1142 (m), 1077 (m), 1028 (m), 992 (m), 931 (w), 894 (w), 786 (w), 733 (s), 699 (s), 649 (w).

Elemental analysis: C$_{21}$H$_{19}$NO. Calculated C 83.69, H 6.35, N 4.65. Found: C 83.67, H 6.39, N 4.72.

![Morpholino(phenyl)methanone](4n)

Morpholino(phenyl)methanone

White solid.

M.p. 40-50 °C.

Yield: 65 %.

R_f : 0.37 (diethyl ether : petroleum ether = 8:2).

1H NMR 300 MHz (CDCl$_3$): δ 7.41-7.34 (overlapping, 5H, ArH), 3.79-3.42 (overlapping, 8H, CH$_2$).

13C NMR 75 MHz (CDCl$_3$): δ 170.3, 135.3, 129.8, 128.5, 127.0, 66.8, 42.3.
IR (film): ν̃ = 3058 (m), 2973 (m), 2923 (m), 2857 8m), 1613 (s), 1496 (m),
1432 (s), 1365 (w), 1301 (m), 1278 (s), 1259 (s), 1365 (w), 1301 (m), 1278
(s), 1259 (s), 1157 (w), 1114 (s), 1068 (m), 1018 (s), 933 (m), 890 (m), 842
(m), 788 (m), 734 (s) 646 (w).

Elemental analysis: C_{11}H_{13}NO_{2}. Calculated C 69.09, H 6.85, N 7.32 Found: C
69.01, H 6.88, N 7.36.

\[
\begin{align*}
\text{IR (film): } & \nu\text{̃ = 3058 (m), 2973 (m), 2923 (m), 2857 (m), 1613 (s), 1496 (m),} \\
& 1432 (s), 1365 (w), 1301 (m), 1278 (s), 1259 (s), 1365 (w), 1301 (m), 1278 \\
& (s), 1259 (s), 1157 (w), 1114 (s), 1068 (m), 1018 (s), 933 (m), 890 (m), 842 \\
& (m), 788 (m), 734 (s) 646 (w).
\end{align*}
\]

N-Phenethylbenzamide114

White solid.

M.p. 114-115 °C.

Yield: 96 %.

Rf : 0.43 (ethyl acetate : petroleum ether = 3:7).

\[
\begin{align*}
^1\text{H NMR 300 MHz (CDCl}_3\text{): } & \delta 7.68 \text{ (d, } J = 6.85 \text{ Hz, 2H, ArH), 7.49-7.30} \\
& \text{(overlapping, 5H, ArH), 7.26-7.22 (overlapping, 3H), 6.20 \text{ (br s, 1H, NH),} \\
& 3.71 \text{ (q, } J = 5.96 \text{ Hz, 2H, CH}_2\text{), 2.93 (t, } J = 6.88 \text{ Hz, 2H, CH}_2\text{).}
\end{align*}
\]

\[
\begin{align*}
^1\text{C NMR 75 MHz (CDCl}_3\text{): } & \delta 167.4, 138.9, 134.7, 131.3, 128.8, 128.7, 128.5, \\
& 126.8, 126.6, 41.1, 35.7.
\end{align*}
\]

IR (film): ν̃ = 3343 (s), 3054 (m), 1640 (s), 1545 (m), 1486 (w), 1455 (w),
1265 (s), 1193 (w),

739 (s), 699 (m), 665 (m).

![Diagram](image.png)

4p

N-heptyl-2-methylbenzamide

Pale yellow solid.

Yield: 96%.

R_f : 0.30 (ethyl acetate : petroleum ether = 1:9).

1H NMR 300 MHz (CDCl$_3$): δ 7.31-7.13 (overlapping, 4H, ArH), 5.94 (bs, 1H, NH), 3.38 (q, $J = 6.88$ Hz, 2H, CH$_2$), 2.41 (s, 3H, CH$_3$), 1.62-1.52 (m, 2H, CH$_2$), 1.34-1.29 (overlapping, 8H, CH$_2$), 0.91-0.86 (m, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 170.0, 136.8, 135.8, 130.8, 129.5, 126.5, 125.5, 39.7, 31.7, 29.6, 28.9, 26.8, 22.5, 19.6, 13.9.

IR (film): $\tilde{\nu}$= 2958 (w), 2927 (m), 2856 (m), 1639 (s), 1540 (m), 1485 (w), 1456 (w), 1377 (w), 1309 (w), 1265 (m), 1159 (w), 1108 (w), 1063 (w), 940 (w), 738 (s).

Elemental analysis: $C_{13}H_{23}NO$. C, 77.21, H, 9.93, N, 6.00. Found: C, 77.25, H, 9.89, N, 5.94.
N-butyl-2-methylbenzamide

Pale yellow oil.

Yield: 64%.

RF: 0.35 (ethyl acetate : petroleum ether = 2:8).

1H NMR 300 MHz (CDCl$_3$): δ 7.31-7.14 (overlapping, 4H, ArH), 5.92 (bs, 1H, NH), 3.39 (q, J = 7.01 Hz, 2H, CH$_2$), 2.4 (s, 3H, CH$_3$), 1.59-1.54 (m, 2H, CH$_2$), 1.41-1.38 (m, 2H, CH$_2$), 0.95 (t, J = 7.27 Hz, 3H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 170.3, 137.0, 136.0, 131.1, 129.8, 126.8, 125.8, 39.7, 31.9, 20.3, 19.9, 13.9.

IR (film): $\tilde{\nu}$ = 3052 (m), 2960 (s), 2930 (s), 2873 (m), 1643 (s), 1601 (w), 1537 (s), 1485 (m), 1456 (m), 1379 (w), 1307 (m), 1265 (s), 1158 (w), 1109 (w), 1007 (w), 856 (w), 739 (s), 703 (m), 658 (w).

Elemental analysis: C$_{12}$H$_{17}$NO. C, 75.35, H, 8.96, N, 7.32. Found: C, 75.31, H, 8.92, N, 7.38.

Trapping of the acyl radical:

Dibenzylamine (0.5 mmol, 1 equiv.) was added to a solution of N-chlorosuccinimide (0.55 mmol, 1.1 equiv.) in acetonitrile (7 mL) under nitrogen atmosphere and the solution was stirred at room temperature for
about 3 hours. Then benzaldehyde (2.5 mmol, 5 equiv.), 2,2,6,6-
tetramethylpiperidine 1-oxyl (TEMPO, 2.5 mmol, 2.5 equiv), TBHP (2.5
mmol, 5 equiv., 0.34 mL of a 70 wt% in water) and Cu(OAc)$_2$H$_2$O (14 mol%)
were added under nitrogen atmosphere. The reaction mixture was
refluxed for about 50 min. The reaction mixture was refluxed for about 50
min. Then the reaction mixture was quenched with 40 mL of a saturated
solution of Na$_2$SO$_3$ (for removal of excess TBHP) and extracted with diethyl
ether. The organic layer was dried over anhydrous Na$_2$SO$_4$ and the solvent
was evaporated under reduced pressure. The crude product was purified
by silica gel column chromatography to provide the TEMPO adduct.

![TEMPO adduct](image)

2,2,6,6-tetramethylpiperidin-1-yl benzoate39

Colorless oil.

Yield: 40 %.

Rf : 0.30 (ethyl acetate : petroleum ether = 1:6).

1H NMR 300 MHz (CDCl$_3$): δ 8.08 (d, J = 7.11 Hz, 2H, ArH), 7.57 (t, J = 7.93
Hz, 1H, ArH), 7.46 (t, J = 7.32 Hz, 2H, CH$_2$) 1.78-1.60 (overlapping, 6H, CH$_2$),
1.28 (s, 6H, CH$_3$), 1.12 (s, 6H, CH$_3$).

13C NMR 75 MHz (CDCl$_3$): δ 166.3, 132.8, 129.5, 128.4, 60.4, 39.1, 31.9,
20.8, 16.9.
IR (film): ν^{-} = 3062 (m), 2975 (m), 2938 (m), 1745 (s), 1601 (w), 1451 (m), 1379 (m), 1364 (m), 1348 (w), 1313 (w), 1285 (w), 1257 (s), 1176 (m), 1082 (s), 1063 (s), 994 (m), 953 (m), 911 (m), 875 (w), 737 (s), 706 (s), 650 (w).

Elemental analysis: C$_{16}$H$_{23}$NO$_{2}$. C, 73.53, H, 8.87, N, 5.36. Found: C, 73.46, H, 8.79, N, 5.31.

EXPERIMENTAL SECTION: CHAPTER II

General procedure for the preparation of 2,3,5,6-tetrafluoro-4-(5-R-1H-1,2,3-triazol-1-yl)benzenesulfonamide 6a-b.

To a 1:1 v/v solution of H$_{2}$O/tert-ButOH (2 mL), compound 12 (0.64 mmol) was added under stirring followed by the addition of the appropriate alkyne (13a-b, 0.64 mmol), nanosized activated powder Cu(0) (0.064 mmol) and triethylamine hydrochloride (0.64 mmol). The reaction mixture was stirred at room temperature for 16 h. After the addition of a further amount of alkyne (0.32 mmol) the reaction mixture was stirred for 24 h and then was diluted with water and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over anhydrous sodium sulphate and evaporated. The obtained solid was purified by flash chromatography.

\[
\text{4-(4-(cyclohexylmethyl)-1H-1,2,3-triazol-1-yl)-3,5,6-tetrafluorobenzene}
\]

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Sulfonamide

Yellow solid.

Yield: 60 %.

Rf: 0.66 (ethyl acetate : petroleum ether = 1:1).

M.p.: 144-146 °C

1H NMR 200 MHz (DMSO-d_6): δ 8.65 (bs, 2H, SO$_2$NH$_2$); 8.39 (s, 1H, Ar-H); 2.64 (d, 2H, CH$_2$); 1.71-0.96 (m, 11H).

MS: *m/z* 393 (M$^+$).

![Formula](image)

Methyl 1-(2,3,5,6-tetrafluoro-4-sulfamoylphenyl)-1H-1,2,3-triazol-4-carboxylate

White powder.

Yield: 60 %.

Rf: 0.55 (ethyl acetate : petroleum ether = 1:1).

M.p.: 184-186 °C

1H NMR 200 MHz (DMSO-d_6): δ 9.35 (s, 1H, Ar-H); 8.69 (bs, 2H, SO$_2$NH$_2$); 3.90 (s, 3H, OCH$_3$).
IR (nujol) \(\nu \ \text{cm}^{-1} = 1731.71 \) (O-C=O ester); \(1376.93-1166.72 \) (SO\(_2\)NH\(_2\)); 3351.68-3249.47 (stretching NH);

MS: \(m/z \ 355 \ [\text{M}^+] \).

General procedure for the preparation of \(N,N \)-dimethyl arene aldehyde hydrazones 17a-f:\(^{80,116}\)

To a well-stirred amount of the appropriate arene aldehyde 16a-f (3.8 mmol, 1 equiv.), \(N,N \)-dimethyl-hydrazine (4.2 mmol, 1.1 equiv) was added dropwise. For liquid arene aldehydes the reaction was conducted without solvent, whilst CH\(_2\)Cl\(_2\) (4 mL) was used in case of solid arene aldehydes. After being stirred for about 6 h, CH\(_2\)Cl\(_2\) (5 mL) was added to the mixture, then it was dried over Na\(_2\)SO\(_4\), and the solvent was evaporated under reduce pressure to afford the product as a pale yellow oil or white solid.

\(\overset{\text{N}}{\text{N}} \text{N} \overset{\text{N}}{\text{N}} \) 17a

(\(E \))-1,1-dimethyl-2-(\(-\text{methylbenzylidene})\hydrazine\(^{80}\)

Pale yellow oil.

Yield: 98 %.

Rf: 0.66 (ethyl acetate : petroleum ether = 3:7).

\(^1\)H NMR 400 MHz (CDCl\(_3\)): \(\delta \ 7.46 \ (d, \ J = 7.8 \ \text{Hz}, \ 2H, \ \text{ArH}), \ 7.25 \ (s, \ 1H, \ CH), \ 7.1 \ (d, \ J = 7.9 \ \text{Hz}, \ 2H, \ \text{ArH}), \ 2.94 \ (s, \ 6H, \ \text{NCH}_3), \ 2.33 \ (s, \ 3H, \ \text{CH}_3) \).

LC/MS: \(m/z \ 163.1 \ [\text{M}+\text{H}]^+ \).
\[\text{17b} \]

\((E)-2\text{-benzylidene-1,1\text{-dimethylhydrazine}}^{80}\)

Pale yellow oil.

Yield: 98 %.

Rf: 0.74 (ethyl acetate : petroleum ether = 2:8).

\(^1\text{H NMR 400 MHz (CDCl}_3\text{):} \delta 7.56 (d, J = 7.6 \text{ Hz}, 2\text{H, ArH}), 7.30 (t, J = 7.5 \text{ Hz}, 2\text{H, ArH}), 7.23 (s, 1\text{H, CH}), 7.20 (m, 1\text{H, ArH}), 2.95 (s, 6\text{H, NCH}_3). \]

LC/MS: m/z 149.1 [M+H]^+.

\[\text{17c} \]

\((E)-2\text{-}(4\text{-isopropylbenzylidene)}\text{-1,1\text{-dimethylhydrazine}}\)

Pale yellow oil.

Yield: 96 %.

Rf: 0.73 (ethyl acetate : petroleum ether = 3:7).

\(^1\text{H NMR 400 MHz (CDCl}_3\text{):} \delta 7.49 (d, J = 8.1 \text{ Hz}, 2\text{H, ArH}), 7.26 (s, 1\text{H, CH}), 7.18 (d, J = 7.9 \text{ Hz}, 2\text{H, ArH}), 2.94 (s, 6\text{H, NCH}_3), 2.91-2.85 (m, 1\text{H, CH}), 1.24 (d, J = 6.9 \text{ Hz}, 6\text{H, CH}_3). \]

\(^{13}\text{C NMR 101 MHz (CDCl}_3\text{):} \delta 148.32, 134.48 (s, C=N), 133.57, 126.55, 125.66, 42.97, 33.91, 23.94. \]

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
LC/MS: m/z 190.1 [M]+, 191.9 [M+H]+.

![structure](image)

(E)-2-(4-methoxybenzylidene)-1,1-dimethylhydrazine

Pale yellow oil.

Yield: 83%.

Rf: 0.59 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl$_3$): δ 7.51 (d, $J = 9.0$ Hz, 2H, ArH), 7.26 (s, 1H, CH), 6.87 (d, $J = 8.8$ Hz, 2H, ArH), 3.81 (s, 3H, CH$_3$), 2.92 (s, 6H, NCH$_3$).

LC/MS: m/z 179.1 [M+H]+.

![structure](image)

(E)-2-(4-butylbenzylidene)-1,1-dimethylhydrazine

Pale yellow oil.

Yield: 97%.

Rf: 0.71 (ethyl acetate : petroleum ether = 0.2:9.8).

1H NMR 400 MHz (CDCl$_3$): δ 7.47 (d, $J = 8.1$ Hz, 2H, ArH), 7.26 (s, 1H, CH), 7.13 (d, $J = 7.9$ Hz, 2H, ArH), 2.94 (s, 6H, NCH$_3$), 2.59 (t, $J = 7.7$ Hz, 2H, CH$_2$), 1.59 (m, 2H, CH$_2$), 1.35 (m, 2H, CH$_2$), 0.92 (t, $J = 7.2$ Hz, 3H, CH$_3$).
13C NMR 101 MHz (CDCl$_3$): δ 142.36, 134.32 (s, C=N), 133.59, 128.58, 125.61, 42.97, 35.46, 33.60, 22.34, 13.98.

LC/MS: m/z 204.2 [M]$^+$, 226.8 [M+Na]$^+$.

(E)-2-(biphenyl-4-ylmethylene)-1,1-dimethylhydrazine

White solid.

M.p. 83-84 °C.

Yield: 93 %.

Rf: 0.77 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl$_3$): δ 7.60 (overlapping, 6H, ArH), 7.43 (t, J = 7.4 Hz, 2H, ArH), 7.33 (t, J = 7.6 Hz, 1H, ArH), 7.28 (s, 1H, CH), 2.99 (s, 6H, NCH$_3$).

13C NMR 101 MHz (CDCl$_3$): 140.9, 139.9, 136.0, 132.3 (s, CN), 128.8, 127.2, 126.9, 126.0, 42.9.

LC/MS: m/z 225.0 [M+H]$^+$, 247.1 [M+Na]$^+$.

General procedure for the trifluoroacetylation of N,N-dimethyl arene aldehyde hydrazones 18a-f:

To an ice-cooled mixture of N,N-dimethyl arene aldehyde hydrazones 17a-f (3.3 mmol, 1 equiv.) and 2,6-lutidine (2 equiv. for 17a,b, 3 equiv. for 17c-e, 4 equiv. for 17f) in anhydrous dichloromethane (10 mL), a solution of trifluoroacetic anhydride (TFAA, 2 equiv. for 17a,b, 6 equiv. for 17f, 10
equiv. for 17d) in dichloromethane (3 mL) was added dropwise with continuous stirring. The mixture was warmed to 20 °C and stirring was continued for about 6 hours. Then the reaction mixture was diluted with dichloromethane (5 mL), washed once with HCl 0.1N, once with H2O and once with Na2CO3(aq). The organic layer was dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure to afford the crude product, which was purified by trituration with petroleum ether and diethyl ether.

![18a](image)

(Z)-3-(2,2-dimethylhydrazono)-1,1,1-trifluoro-3-p-tolylpropan-2-one

White solid.

M.p. 113-115 °C.

Yield: 50 %.

Rf: 0.31 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl3): δ 7.17 (d, J = 7.9 Hz, 2H, ArH), 7.10 (d, J = 7.9 Hz, 2H, ArH), 3.05 (s, 6 H, NCH3), 2.37 (s, 3H, CH3).

13C NMR 101 MHz (CDCl3): δ 178.0 (q, J = 29.9 Hz, CO), 138.5, 131.9 (s, C=N), 130.3, 129.9, 128.5, 117.8 (q, J = 292.2 Hz, CF3), 47.1, 21.3.

19F NMR 376 MHz (CDCl3): δ -68.8 (s, 3F, CF3).
Pale yellow solid.

M.p. 71 °C.

Yield: 63 %.

Rf: 0.27 (ethyl acetate : petroleum ether = 1:9).

\(^1\)H NMR 400 MHz (CDCl\(_3\)): \(\delta\) 7.36 (overlapping, 3H, ArH), 7.21 (overlapping, 2H, ArH), 3.05 (s, 6H, NCH\(_3\)).

\(^{13}\)C NMR 101 MHz (CDCl\(_3\)): \(\delta\) 177.9 (q, \(J = 30.3\) Hz, CO), 133.0 (s, C=N), 130.5, 128.6, 127.7, 125.9, 118.0 (q, \(J = 292.3\) Hz, CF\(_3\)), 47.1.

\(^{19}\)F NMR 376 MHz (CDCl\(_3\)): \(\delta\) -68.8 (s, 3F, CF\(_3\)).

White crystals.

M.p. 86-88 °C.

Yield: 30 %.
Rf: 0.70 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl$_3$): δ 7.21 (d, $J = 7.9$ Hz, 2H, ArH), 7.12 (d, $J = 7.9$ Hz, 2H, ArH), 3.05 (s, 6 H, NCH$_3$), 2.95-2.88 (m, 1H, CH), 1.25 (d, $J = 7.2$ Hz, 6H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 176.2 (q, $J = 32.1$ Hz, CO), 149.9, 149.4, 140.0, 131.5 (s, C=N), 130.4, 126.5, 125.9, 122.9 (q, $J = 286.6$ Hz, CF$_3$), 41.2, 33.9, 23.7.

19F NMR 376 MHz (CDCl$_3$): δ - 68.8 (s, 3F, CF$_3$).

(Z)-3-(2,2-dimethylhydrazono)-1,1,1-trifluoro-3-(4-methoxyphenyl)propan-2-one80

Beige solid.

M.p. 85 °C.

Yield: 35 %.

Rf: 0.30 (ethyl acetate : petroleum ether = 1:5:8.5).

1H NMR 400 MHz (CDCl$_3$): δ 7.13 (d, $J = 8.5$ Hz, 2H, ArH), 6.89 (d, $J = 8.5$ Hz, 2H, ArH), 3.83 (s, 6 H, NCH$_3$), 3.06 (s, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 190.8 (q, $J =30.3$ Hz, CO), 159.7, 131.7 (s, C=N), 127.4, 118.0 (q, $J =292.2$ Hz, CF$_3$), 113.8, 113.4, 52.2, 47.1.
19F NMR 376 MHz (CDCl₃): δ -68.8 (s, 3F, CF₃).

(Z)-3-(4-butylphenyl)-3(2,2-dimethylhydrazono)-1,1,1-trifluoropropan-2-one

White crystals.

M.p. 86-88 °C.

Yield: 65 %.

Rf: 0.48 (ethyl acetate : petroleum ether = 1:9).

1H NMR 400 MHz (CDCl₃): δ 7.17 (d, J = 8.0 Hz, 2H, ArH), 7.11 (d, J = 7.9 Hz, 2H, ArH), 3.05 (s, 6 H, NCH₃), 2.62 (t, J = 8 Hz, 2H, CH₂), 1.65-1.57 (m, 2H, CH₂) 1.41-1.32 (m, 2H, CH₂), 0.93 (t, J = 7.4 Hz, 3H, CH₃).

13C NMR 101 MHz (CDCl₃): δ 175.2 (q, J = 31.1 Hz, CO), 143.5, 130.3 (s, C=N), 127.9, 118.0 (q, J = 292.3 Hz, CF₃), 47.1, 35.5, 33.4, 22.4, 13.4.

19F NMR 376 MHz (CDCl₃): δ -68.8 (s, 3F, CF₃).

(Z)-3-(biphenyl-4-yl)-3(2,2-dimethylhydrazono)-1,1,1-trifluoropropan-2-one
White solid.

M.p. 145 °C.

Yield: 89 %.

Rf: 0.25 (ethyl acetate : petroleum ether = 2:9).

1H NMR 400 MHz (CDCl$_3$): δ 7.62-7.59 (overlapping, 4H, ArH), 7.45 (t, J = 7.8 Hz, 2H, ArH), 7.36 (t, J = 7.1 Hz, 1H, ArH), 7.29 (d, J = 7.3 Hz, 2H, ArH), 3.10 (s, 6 H, NCH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 178.0 (q, J = 32.4 Hz, CO), 141.4, 140.3, 131.9 (s, C=N), 130.9, 128.9, 127.1, 127.1, 126.5, 122.4, 118.0 (q, J = 292.6 Hz, CF$_3$), 47.3.

19F NMR 376 MHz (CDCl$_3$): δ -68.8 (s, 3F, CF$_3$).

Hydrolysis of trifluoroacylated N,N-dimethyl hydrazones 8 and IIIa-e.

The opportune trifluoroacylated hydrazone 18a-f was dissolved in 5N H$_2$SO$_4$ and the solution was stirred for 24 h for compounds 18a,b, 2.5 h for 18c and 1 h for 18e at room temperature (for 18d and 18f the reaction mixture was heated at 60 °C for 24 hours). Then the product was extracted with diethyl ether and the organic layers were dried over Na$_2$SO$_4$, and the solvent was evaporated under reduced pressure. The product was then purified by trituration with petroleum ether and diethyl ether.

![3,3,3-trifluoro-2,2-dihydroxy-1-p-tolylpropan-1-one](image-url)
White crystals.

M.p. 84-86 °C.

Yield: 60 %.

Rf: 0.51 (ethyl acetate : petroleum ether = 2:8)

1H NMR 400 MHz (CDCl$_3$): δ 8.23 (d, $J = 8.6$ Hz, 2H, ArH), 7.30 (d, $J = 8.6$ Hz, 2H, ArH), 4.79 (s, 2H, OH), 2.45 (s, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 191.4 (s, CO), 146.7, 132.0, 129.3, 128.9, 121 (q, $J = 289.1$ Hz, CF$_3$), 93 (q, $J = 32.5$ Hz, COH), 21.9.

19F NMR 376 MHz (CDCl$_3$): δ -81.2 (s, 3F, CF$_3$).

ESI: m/z 231.0 [M-2]$^+$

Elemental analysis: C$_{10}$H$_9$F$_3$O$_3$. Calculated C 51.29, H 3.87. Found: C 51.73, H 3.78.

\[\text{IIIa} \]

3,3,3-trifluoro-2,2-dihydroxy-1-phenylpropan-1-one80

White crystals

M.p. 83 °C

Yield: 60 %

Rf: 0.47 (ethyl acetate : petroleum ether = 2:8)
\[^1H \text{NMR 400 MHz (CDCl}_3\text{): } \delta 8.33 (d, J = 8.1 \text{ Hz}, 2\text{H, ArH}), 7.67 (t, J = 7.1 \text{ Hz}, 1\text{H, ArH}), 7.51 (t, J = 7.8 \text{ Hz}, 2\text{H, ArH}), 4.80 (s, 2 \text{H, OH}). \]

\[^{13}C \text{NMR 101 MHz (CDCl}_3\text{): } \delta 191.2 \text{ (s, CO), 135.2, 131.8, 131.6, 128.5, 121.0 (q, J = 286.8 \text{ Hz, CF}_3\text{), 93.8 (q, J = 35.6 \text{ Hz, COH}).} \]

\[^{19}F \text{NMR 376 MHz (CDCl}_3\text{): } \delta -81.1 \text{ (s, 3F, CF}_3\text{).} \]

ESI: m/z 257.0 [M+K-2]^{+}

\[
\text{3,3,3-trifluoro-2,2-dihydroxy-1-(4-isopropylphenyl)propan-1-one}
\]

Yellow oil

Yield: 82 %

Rf: 0.25 (ethyl acetate : petroleum ether = 1:9)

\[^1H \text{NMR 400 MHz (CDCl}_3\text{): } \delta 8.27 (d, J = 8.2 \text{ Hz}, 2\text{H, ArH}), 8.35 (t, J = 8.6 \text{ Hz}, 2\text{H, ArH}), 4.95 (s, 2 \text{H, OH}), 2.99 (m, 1\text{H, CH}), 1.29 (d, J = 7.0 \text{ Hz}, 6\text{H, CH}_3). \]

\[^{13}C \text{NMR 101 MHz (CDCl}_3\text{): } \delta 191.3 \text{ (s, CO), 157.2, 132.2, 129.2, 126.7, 121.5 (q, J = 286.1 \text{ Hz, CF}_3\text{), 93.8 (q, J = 35.4 \text{ Hz, COH), 34.4, 23.5.}} \]

\[^{19}F \text{NMR 376 MHz (CDCl}_3\text{): } \delta -81.2 \text{ (s, 3F, CF}_3\text{).} \]

ESI: m/z 299.0 [M+K-2]^{+}
Elemental analysis: C_{12}H_{13}F_{3}O_{3}. Calculated C 54.96, H 5.00. Found: C 53.67, H 5.34.

3,3,3-trifluoro-2,2-dihydroxy-1-(4-methoxyphenyl)propan-1-one

White crystals

M.p. 81 °C

Yield: 59 %

Rf: 0.54 (ethyl acetate : petroleum ether = 3:7)

{1}H NMR 400 MHz (CDCl\textsubscript{3}): \(\delta\) 8.34 (d, \(J = 9.2\) Hz, 2H, ArH), 6.97 (d, \(J = 9.2\) Hz, 2H, ArH), 4.81 (s, 2 H, OH), 3.91 (s, 3H, CH\textsubscript{3}).

{13}C NMR 101 MHz (CDCl\textsubscript{3}): \(\delta\) 189.8 (s, CO), 165.2, 134.7, 132.9, 121.0 (q, \(J = 289.9\) Hz, CF\textsubscript{3}), 113.9, 93.7 (q, \(J = 34.1\) Hz, COH), 55.7.

{19}F NMR 376 MHz (CDCl\textsubscript{3}): \(\delta\) -81.4 (s, 3F, CF\textsubscript{3}).

ESI: m/z 249 [M-1]

Elemental analysis: C_{10}H_{9}F_{3}O_{4}. Calculated C 48.01, H 3.63. Found: C 48.20, H 3.42.

1-(4-butylphenyl)-3,3,3-trifluoro-2,2-dihydroxypropan-1-one
Yellow oil.

Yield: 74 %.

Rf: 0.58 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl$_3$): δ 8.25 (d, $J = 8.3$ Hz, 2H, ArH), 7.30 (d, $J = 8.3$ Hz, 2H, ArH), 4.86 (s, 2 H, OH), 2.69 (t, $J = 7.7$ Hz, 2H, CH$_2$), 1.63 (m, 2H, CH$_2$), 1.37 (m, 2H, CH$_2$), 0.94 (t, $J = 7.4$ Hz, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 191.5 (s, CO), 151.4, 132.1, 129.1, 128.6, 121.0 (q, $J = 288.1$ Hz, CF$_3$), 94.1 (q, $J = 38.4$ Hz, COH), 35.9, 32.9, 22.4, 13.9.

19F NMR 376 MHz (CDCl$_3$): δ -81.2 (s, 3F, CF$_3$).

ESI: m/z 313.0 [M+K-2]$^+$

Elemental analysis: C$_{13}$H$_{15}$F$_3$O$_3$. Calculated C 56.52, H 5.47. Found: C 55.83, H 5.31.

IIIe

1-(biphenyl-4-yl)-3,3,3-trifluoro-2,2-dihydroxypropan-1-one

White crystals.

M.p. 87-88 °C.

Yield: 85 %.
Rf: 0.31 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (CDCl$_3$): δ 8.41 (d, $J = 8.8$ Hz, 2H, ArH), 7.73 (d, $J = 7.2$ Hz, 2H, ArH), 7.65 (d, $J = 8.2$ Hz, 2H, ArH), 7.51-7.43 (overlapping, 3H, ArH), 4.79 (s, 2 H, OH).

13C NMR 101 MHz (CDCl$_3$): δ 191.3 (s, CO), 147.8, 139.4, 132.5, 130.2, 129.0, 128.7, 127.4, 127.1, 121.5 (q, $J = 289.6$ Hz, CF$_3$), 93.8 (q, $J = 37.3$ Hz, COH).

19F NMR 376 MHz (CDCl$_3$): δ -81.2 (s, 3F, CF$_3$).

ESI: m/z 333 [M+K-2]$^+$

Elemental analysis: C$_{15}$H$_{11}$F$_3$O$_3$. Calculated C 60.82, H 3.74. Found: C 60.64, H 3.32.

General procedure for the preparation of N-alkyl-3-acetyl indoles 20a-c:

Anhydrous DMSO (25 mL) was added to KOH (50 mmol, 4 equiv., crushed pellets), and the mixture was stirred at room temperature for 5 min. 3-Acetylindole 19 (13 mmol, 1 equiv.) was then added, and the mixture was stirred at room temperature for 45 - 60 min. An appropriate alkyl halide (bromoethane, 2-iodo propane, 1-iodo butane, 26 mmol, 2 equiv.) was added, and the mixture was stirred at room temperature for 45-60 min. The progress of the reaction was monitored by TLC. Then, water was added and the white precipitate that formed was filtered under reduced pressure and washed with water. In case of compound 1-(1-butyl-1H-indol-3-yl)ethanone 20c, product was extracted from the aqueous solution with...
diethyl ether, the organic layer was washed with water and dried over Na$_2$SO$_4$, and the solvent was evaporated under reduced pressure to give the compound as a solid.

![20a](image)

1-(1-ethyl-1H-indol-3-yl)ethanone

White crystals.

M.p. 87-89 °C.

Yield: 89 %.

Rf: 0.28 (ethyl acetate: petroleum ether = 7:3).

1H NMR 400 MHz (CDCl$_3$): δ 8.39-8.36 (m, 1H, ArH), 7.77 (s, 1H, ArH), 7.38-7.36 (m, 1H, ArH), 7.30 (overlapping, 2H, ArH), 4.21 (q, J = 7.4 Hz, 2H, CH$_2$), 2.53 (s, 3H, CH$_3$), 1.52 (t, J = 7.4 Hz, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 192.91, 136.57, 133.9, 126.5, 123.20, 122.69, 122.50, 117.12, 109.68, 47.71, 27.66, 15.19.

LC/MS: m/z 188.1 [M+H]$^+$, 210.1 [M+Na]$^+$

![20b](image)
1-(1-butyl-1H-indol-3-yl)ethanone

Pale yellow oil.

Yield: 91 %.

Rf: 0.33 (ethyl acetate : petroleum ether = 7:3).

1H NMR 400 MHz (CDCl$_3$): δ 8.39-8.36 (m, 1H, ArH), 7.73 (s, 1H, ArH), 7.37-7.35 (m, 1H, ArH), 7.30-7.28 (overlapping, 2 H, ArH), 4.15 (t, $J = 7.15$ Hz, 2H, CH$_2$), 2.53 (s, 3H, COOCH$_3$), 1.87 (m, 2H, CH$_2$), 1.37 (m, 2H, CH$_2$), 0.96 (t, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 192.93, 136.81, 134.69,. 126.39, 123.16, 122.65, 122.46, 116.99, 109.81, 46.86, 31.94, 27.67, 20.12, 13.63

LC/MS: m/z 215.1 [M+H]$^+$

![20c]

1-(1-isopropyl-1H-indol-3-yl)ethanone

Beige solid.

M.p. 82-83 °C.

Yield: 50 %.

Rf: 0.65 (ethyl acetate : petroleum ether = 8:2).
General procedure for the preparation of N-alkyl-indoles β-diketoesters 21a-c:

A solution of the appropriate 3-alkylacetylindole 20a-c (3.8 mmol, 1 equiv.) and diethyl oxalate (1.3 equiv.) in methanol (7.45 mL) was added to a solution of sodium methoxide (3.2 equiv.), generated from sodium in methanol (3.2 equiv. of Na in 5.2 mL of MeOH). The mixture was refluxed under a nitrogen atmosphere for 4 h. Then 1.6 equiv. of MeONa and 0.65 equiv. of diethyl oxalate were added to the mixture and the mixture was refluxed for about 1 h. After starting material consumption, the reaction was quenched with water and acidified with HCl 1N. The product was then recovered by filtration under reduced pressure from water as yellow solid.

H NMR 400 MHz (CDCl$_3$): δ 8.38-7.36 (m, 1H, ArH), 7.86 (s, 1H, ArH), 7.41-7.39 (m, 1H, ArH), 7.31-7.29 (overlapping, 2H, ArH), 4.71 (m, 1H, CH), 2.55 (s, 3H, COCH$_3$), 1.60 (d, J = 6.6 Hz, 6H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 192.99, 136.84, 130.87, 126.44, 123.06, 122.62, 122.54, 117.23, 109.92, 47.84, 27.73, 22.65.

LC/MS: m/z 202.1 [M+H]$^+$.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
(Z)-methyl 4-(1-ethyl-1H-indol-3-yl)-2-hydroxyoxobut-2-enoate87

Yellow solid.

M.p. 160 °C.

Yield: 85 %.

Rf: 0.54 (ethyl acetate : petroleum ether = 1:1).

1H NMR 400 MHz (CDCl\textsubscript{3}): δ 8.40-8.36 (m, 1H, ArH), 7.93 (s, 1H, ArH), 7.42-7.40 (m, 1H, ArH), 7.36-7.34 (overlapping, 2H, ArH), 6.87 (s, 1H, ArH), 4.28 (q, J = 7.2 Hz, 2H, CH\textsubscript{2}), 3.94 (s, 3H, COOCH\textsubscript{3}), 1.58 (t, J = 7.2 Hz, 3H, CH\textsubscript{3}).

13C NMR 101 MHz (CDCl\textsubscript{3}): δ 188.2 (s, COO), 163.6 (s, CO), 163.2 (s, COH), 137.0, 134.2, 126.3, 123.9, 123.2, 122.8, 116.3, 110.1, 100.4, 52.9, 42.1, 15.1.

LC/MS: m/z 296.1 [M+Na]⁺.

\[21b\]

(Z)-methyl 4-(1-butyl-1H-indol-3-yl)-2-hydroxyoxobut-2-enoate

Yellow solid.

M.p. 104-105 °C.

Yield: 54 %.
Rf: 0.60 (ethyl acetate : petroleum ether = 4:6).

1H NMR 400 MHz (CDCl$_3$): δ 8.39-8.37 (m, 1H, ArH), 7.90 (s, 1H, ArH), 7.41-7.39 (m, 1H, ArH), 7.36-7.33 (overlapping, 2H, ArH), 6.87 (s, 1H, ArH), 4.20 (t, $J = 6.9$ Hz, 2H, CH$_2$), 3.94 (s, 3H, COOCH$_3$), 1.90 (m, 2H, CH$_2$), 1.38 (m, 2H, CH$_2$), 0.98 (t, $J = 7.2$ Hz, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 188.22 (s, COO), 163.61 (s, CO), 163.1 (s, COH), 137.22, 134.94, 126.25, 123.88, 123.17, 122.75, 114.84, 110.29, 100.41, 52.99, 47.21, 31.83, 20.10, 13.61.

LC/MS: m/z 301.1 [M]+.

![Structure](structure.png)

(Z)-methyl 4-(1-isopropyl-1H-indol-3-yl)-2-hydroxyoxobut-2-enoate

Yellow solid.

M.p. 90-92 °C.

Yield: 93 %.

Rf: 0.70 (ethyl acetate : petroleum ether = 6:4).

1H NMR 400 MHz (CDCl$_3$): δ 8.40-8.38 (m, 1H, ArH), 8.00 (s, 1H, ArH), 7.45-7.43 (m, 1H, ArH), 7.36-7.33 (overlapping, 2H, ArH), 6.89 (s, 1H, ArH), 4.73 (m, 1H, CH), 3.95 (s, 3H, COOCH$_3$), 1.62 (d, $J = 7$ Hz, 6H, CH$_3$).
13C NMR 101 MHz (CDCl$_3$): δ 188.1 (s, COO), 163.6 (s, CO), 163.2 (s, COH), 136.9, 131.3, 126.2, 123.7, 123.2, 122.7, 114.9, 110.3, 100.3, 52.9, 48.2, 22.6.

LC/MS: m/z 287.9 [M]$^+$, 310.1 [M+Na]$^+$.

General procedure for the preparation of N-**alkyl-indoles-1H-pyrazole-5-carboxylates IVa,d,f:**90

Hydrazine monohydrate 98% ((64-65% N$_2$H$_4$), 28.1 mmol, 8.8 equiv,) was added dropwise to a mixture of isopropyl alcohol (7.9 mL) and glacial acetic acid (3.4 mL) cooled at 0 °C. Then the appropriate N-**alkyl-indoles** β-diketoester 21a-c (3.2 mmol, 1 equiv.) was added portionwise. After stirring for 2 h, the mixture was poured into water and ice to afford the product as a brown precipitate that was filtered under reduced pressure.

Methyl 3-(1-ethyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylate97

Yellow solid.

M.p. 176-178 °C.

Yield: 93%.

R$_f$: 0.41 (ethyl acetate : petroleum ether = 5:5).
Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

1H NMR 400 MHz (CDCl$_3$): δ 8.37 (bs, 1H, NH) 7.95 (d, $J = 6.1$ Hz, 1H, ArH), 7.47 (s, 1H, ArH), 7.40 (d, $J = 6.7$ Hz, 1H, ArH), 7.32-7.21 (overlapping, 2H, ArH), 7.07 (s, 1H, ArH), 4.23 (q, $J = 7.3$ Hz, 2H, CH$_2$), 3.96 (s, 3H, COOCH$_3$), 1.52 (t, $J = 7.5$ Hz, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 161.9, 146.6, 136.2, 132.2, 125.7, 125.3, 122.4, 120.6, 120.0, 109.8, 108.0, 105.3, 52.1, 41.2, 15.4.

LC/MS: m/z 270.2 [M+H]$^+$

Elemental analysis: C$_{15}$H$_{15}$N$_3$O$_2$. Calculated C 66.90, H 5.61, N 15.60. Found: C 66.86, H 5.57, N 15.02.

![IVd](image)

Methyl 3-(1-butyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylate

Pale yellow solid.

M.p. 173-175 °C.

Yield: 46 %.

Rf: 0.55 (ethyl acetate : petroleum ether = 6:4).

1H NMR 400 MHz (CDCl$_3$): δ 10.45 (bs, 1H, NH), 7.95 (d, $J = 7.9$ Hz, 1H, ArH), 7.44 (s, 1H, ArH), 7.40 (d, $J = 7.9$, Hz, 1H, ArH), 7.29 (t, $J = 6.2$ Hz, 1H, ArH), 7.23 (t, $J = 6.2$ Hz, 1H, ArH), 7.07 (s, 1H, ArH), 4.17 (t, $J = 6.9$ Hz, 2H, CH$_2$),
3.97 (s, 3H, COOCH$_3$), 1.87 (m, 2H, CH$_2$), 1.37 (m, 2H, CH$_2$), 0.96 (t, $J = 7.5$ Hz, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 161.9, 149.1, 143.5, 136.5, 129.9, 126.1, 125.7, 122.3, 120.5, 120.0, 109.9, 105.2, 52.1, 46.3, 32.2, 20.2, 13.7.

MALDI: m/z 298.3 [M+H]$^+$.

Elemental analysis: C$_{17}$H$_{19}$N$_3$O$_2$. Calculated C 68.67, H 6.44, N 14.13. Found: C 70.03, H 6.51, N 12.32.

Methyl 3-(1-isopropyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylate

Pale yellow solid.

M.p. 174-175 °C.

Yield: 66 %.

Rf: 0.41 (ethyl acetate : petroleum ether = 5:5).

1H NMR 400 MHz (CDCl$_3$): δ 10.71 (bs, 1H, NH), 7.94 (d, $J = 7.5$ Hz, 1H, ArH), 7.58 (s, 1H, ArH), 7.43 (d, $J = 8$ Hz, 1H, ArH), 7.29 (t, $J = 8$ Hz, 1H, ArH), 7.23 (t, $J = 7.2$ Hz, 1H, ArH), 7.09 (s, 1H, ArH), 4.73 (m, 1H, CH), 3.96 (s, 3H, COOCH$_3$), 1.58 (d, $J = 7.8$ Hz, 6H, (CH$_3$)$_2$).
13C NMR 101 MHz (CDCl$_3$): δ 161.8, 143.7, 140.4, 136.1, 125.7, 122.3, 122.1, 120.6, 119.9, 109.9, 105.9, 105.3, 52.1, 47.4, 22.8.

LC/MS: m/z 284.3 [M+H]$^+$.

Elemental analysis: C$_{16}$H$_{17}$N$_3$O$_2$. Calculated C 67.83, H 6.05, N 14.83. Found: C 67.60, H 6.21, N 14.81.

Procedure for the alkylation of Methyl 3-(1-ethyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylate IVb:

To a solution of Methyl 3-(1-ethyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylate (1.8 mmol, 1 equiv.) in anhydrous DMF (2.6 mL) under nitrogen atmosphere, NaH 60% oil dispersion (2.6 mmol, 1.5 equiv.) was added portionwise at 0 °C. The mixture thus obtained was stirred for 10 min at a 0 °C, then CH$_3$I (2.6 mmol, 1.5 mmol) was added dropwise, and the stirring was continued for another 1 h at room temperature. The mixture was poured into water and extracted with ethyl acetate. The combined organic layers were then washed with water, dried over Na$_2$SO$_4$ and evaporated under reduced pressure. The crude product was purified by flash chromatography (8:2 petroleum ether / ethyl acetate) to give the desired product.

![IVb](image-url)
Methyl 3-(1-ethyl-1H-indol-3-yl)-1-methyl-1H-pyrazole-5-carboxylate

Pale brown solid.

M.p. 110 °C.

Yield: 39 %.

Rf: 0.65 (ethyl acetate : petroleum ether = 5:5).

1H NMR 400 MHz (CDCl$_3$): δ 8.09 (d, $J = 7.8$ Hz, 1H, ArH), 7.52 (s, 1H), 7.37 (d, $J = 8.2$ Hz, 1H, ArH), 7.28-7.19 (overlapping, 2H, ArH), 7.11 (s, 1H, ArH), 4.24 (s, 3H, NCH$_3$), 4.21 (q, $J = 7.3$ Hz, 2H, CH$_2$), 3.92 (s, 3H, COOCH$_3$), 1.50 (t, 3H, CH$_3$).

13C NMR 101 MHz (CDCl$_3$): δ 160.5, 146.0, 136.3, 132.7, 126.1, 124.1, 121.9, 120.8, 120.0, 109.4, 108.4, 107.9, 51.9, 41.1, 39.4, 15.4.

MALDI: m/z 284.3 [M+H]$^+$.

Elemental analysis: C$_{16}$H$_{17}$N$_3$O$_2$. Calculated C 67.83 H 6.05, N 14.83. Found: C 67.85, H 5.97, N 14.25.

General procedure for the preparation of N-alkyl-indoles-1H-pyrazole-5-carboxylic acids 8, IVc,e,g:

To a solution of the appropriate ester IVa,b,d,f (0.5 mmol, 1 equiv.) and 20% NaOH (2 mmol, 4 equiv.) in ethanol (16 mL) was stirred under reflux for about 1.5 h. Then, the reaction mixture was poured into water and ice and acidified with 1N HCl to afford the product as a white precipitate that was filtered under reduced pressure.
3-(1-ethyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylic acid

White solid.

M.p. 280-281 °C.

Yield: 30 %.

Rf: 0.09 (petroleum ether : ethyl acetate = 5:5)

1H NMR 400 MHz (DMSO-d$_6$): δ 7.99 (s, 1H, ArH), 7.88 (s, 1H, ArH), 7.54 (d, J = 8.1 Hz, ArH), 7.21 (t, J = 7.44 Hz, 1H, ArH), 7.15 (t, J = 7.44 Hz, 1H, ArH), 7.00 (s, 1H, ArH), 4.26 (q, J = 6.8 Hz, 2H, CH$_2$), 1.41 (t, J = 6.8 Hz, 3H, CH$_3$).

13C NMR 101 MHz (DMSO-d$_6$): δ 168.4 (s, CO), 138.62, 135.8, 132.8, 126.1, 125.0, 121.7, 119.9, 117.9, 117.6, 110.1, 40.4, 15.3

MALDI: m/z 256.1 [M+H]$^+$

Elemental analysis: C$_{14}$H$_{13}$N$_3$O$_2$. Calculated C 65.87 H 5.13, N 16.46. Found: C 65.89 H 5.24, N 16.16
3-(1-ethyl-1H-indol-3-yl)-1-methyl-1H-pyrazole-5-carboxylic acid

White solid.

M.p. 224-225 °C.

Yield: 64 %.

Rf: 0.05 (ethyl acetate : petroleum ether = 2:8).

1H NMR 400 MHz (DMSO-d$_6$): δ 8.14 (d, $J = 7.9$ Hz, 1H, ArH), 7.88 (s, 1H), 7.51 (d, $J = 8.7$ Hz, 1H, ArH), 7.20 (t, $J = 8.2$ Hz, 1H, ArH), 7.14-7.11 (overlapping, 2H, ArH), 4.24 (q, $J = 7.2$ Hz, 2H, CH$_2$), 4.14 (s, 3H, NCH$_3$), 1.41 (t, $J = 7.2$ Hz, 3H, CH$_3$).

13C NMR 101 MHz (DMSO-d$_6$): δ 160.8, 145.6, 135.3, 133.7, 126.1, 125.2, 121.5, 120.9, 119.5, 109.8, 107.7, 107.1, 40.4, 38.9, 15.3.

MALDI: m/z 270 [M+H]$^+$

Elemental analysis: C$_{15}$H$_{15}$N$_3$O$_2$. Calculated C 66.90 H 5.61, N 15.60. Found: C 66.67, H 5.32, N 15.17.
3-(1-butyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylic acid

White solid.

M.p. 250-252 °C.

Yield: 86 %.

Rf: 0.05 (ethyl acetate : petroleum ether = 6:4).

1H NMR 400 MHz (DMSO-d_6): δ 8.01 (s, 1H, ArH), 7.85 (s, 1H, ArH), 7.53 (d, J=8.4 Hz, 1H, ArH), 7.21 (t, J = 8.4 Hz, 1H, ArH), 7.13 (t, J = 8.4 Hz, 1H, ArH), 6.97 (s, 1H, ArH), 4.22 (t, J = 6.0 Hz, 2H, CH$_2$), 1.79 (m, 2H, CH$_2$), 1.28 (m, 2H, CH$_2$), 0.91 (t, J = 5.4 Hz, 3H, CH$_3$).

13C NMR 101 MHz (DMSO-d_6): δ 162.2, 136.2, 126.8, 124.9, 121.7, 119.8, 110.2, 104.1, 45.3, 31.8, 19.5, 13.5.

MALDI: m/z 284.1 [M+H]$^+$

Elemental analysis: C$_{16}$H$_{17}$N$_3$O$_2$. Calculated C 67.83 H 6.05, N 14.83 Found: C 66.15, H 6.05, N 14.01.
3-(1-isopropyl-1H-indol-3-yl)-1H-pyrazole-5-carboxylic acid

Yellow solid.

M.p. 287 °C dec.

Yield: 64 %.

Rf: 0.03 (ethyl acetate : petroleum ether = 6:4).

1H NMR 400 MHz (DMSO-d$_6$): δ 7.99 (overlapping, 2H, ArH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.21 (t, J = 7.8 Hz, 1H, ArH), 7.13 (t, J = 7.8 Hz, 1H, ArH), 7.00 (s, 1H, ArH), 4.81 (m, 1H, CH), 1.50 (d, J = 6.9 Hz, 6H, CH$_3$).

13C NMR 101 MHz (DMSO-d$_6$): δ 163.6, 140.9, 130.2, 128.3, 126.8, 125.5, 125.1, 115.4, 109.3, 51.9, 27.7.

MALDI: m/z 270.3 [M+H]$^+$

Elemental analysis: C$_{15}$H$_{15}$N$_3$O$_2$. Calculated C 66.90, H 5.61, N 15.60. Found: C 66.23, H 5.10, N 14.80.

Preparation of 6-nitrobenzo[c][1,2]oxaborol-1(3H)-ol 2394,104

To 6.4 mL of fuming nitric acid (18.3 equiv.) cooled at -45/-40 °C was added 1 g (7.4 mmol, 1 equiv.) of commercially available benzoxyborol

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
with stirring. The addition was done portionwise and was complete in about 5 min. The mixture was stirred and maintained at -45 to -30 °C, and the progress of the reaction was monitored by TLC (ethyl acetate : petroleum ether = 7:3). After 20 min. the mixture was poured into water and ice and kept at 0-10 °C for 2 hours. The obtained white precipitate was then filtered in vacuo, washed with water and lyophilized to afford the compound as a white solid.

6-nitrobenzo[c][1,2]oxaborol-1(3H)-ol

White solid.

M.p. 178-180 °C.

Yield: 80 %.

Rf: 0.32 (ethyl acetate : petroleum ether = 7:3).

1H NMR: δ 9.59 b(s, 1H, OH), 8.58 (ss, 1H, ArH), 8.33 (d, $J = 1.7$ Hz, 1H, ArH), 8.33 (dd, $J_1 = 8.3$ Hz, $J_2 = 2.2$ Hz, 1H, ArH), 7.69 (d, $J = 8.5$ Hz, 1H, ArH), 5.12 (s, 2H, CH$_2$).

13C NMR: δ 160.6, 147.2, 140.7, 125.6, 123.1, 70.1 (s, CH$_2$).

MS: ESI: m/z 178.0 [M]$^+$.

Preparation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol 24.

Roberta Cadoni
Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
To a solution of 6-nitrobenzo[c][1,2]oxaborol-1(3H)-ol 23 (2.8 mmol, 1 equiv.) in THF (12 mL) was added AcOH glacial (1.2 mL). The mixture was vacuum/N₂ purged three times and 10% Pd/C (82 mg) was added. The mixture was again vacuum/N₂ purged three times then vacuum purged again. H₂ was then introduced from a balloon and the reaction was stirred at room temperature for 2 hours. The reaction solution was filtered through a short pad of celite, washed with methanol, and the filtrate was evaporated to afford the product as a foamy orange solid.

![Image of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol](image)

6-aminobenzo[c][1,2]oxaborol-1(3H)-ol

Foamy orange solid.

Yield: 95 %.

Rf: 0.46 (ethyl acetate).

^{1}H NMR 400 MHz (DMSO-d₆): δ 9.05 (bs, 2H, NH₂), 7.03 (d, J = 7.9 Hz, 1H, ArH), 6.89 (s, 1H, ArH), 6.71 (dd, J₁ = 7.7 Hz, J₂ = 2.0 Hz, 1H, ArH), 4.90 (s, 1H, OH), 4.81 (s, 2H, CH₂).

^{13}C NMR 101 MHz (DMSO-d₆): δ 172.1, 147.6, 141.5, 121.5, 117.6, 114.6, 69.7 (s, CH₂).

MS: ESI: m/z 148.0 [M]^+.

General procedure for the synthesis of N,N'-disubstituted ureas 26a-j:
6-Amino benzoxaborole 24 (6-aminobenzo[c][1,2]oxaborol-1(3H)-ol) (0.67 mmol, 1 equiv.) was dissolved in acetone (1.5 mL) and the solution was stirred at room temperature. Then the opportune isocyanate 25a-j (0.67 mmol, 1 equiv.) was added dropwise (or in portion) and the solution became pasty. When 24 was consumed, petroleum ether was added to the mixture, and the precipitate was filtered. The solid was washed with methanol to afford the desired product as a solid.

\[
\text{26a}
\]

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-phenylurea

Pale yellow solid.

Yield: 42%.

Rf: 0.70 (ethyl acetate : petroleum ether = 9:1).

M.p. 260 °C dec.

\[\begin{align*}
^{1}H \text{ NMR} & \quad 400 \text{ MHz (DMSO-d}_{6}\text{):} \delta 9.18 \text{ (s, 1H, OH), 8.66 (s, 1H, NH), 8.64 (s, 1H, NH), 7.83 (d, } J = 1.8 \text{ Hz, 1H, Ar), 7.53 (dd, } J^1 = 8.2 \text{ Hz, } J^2 = 2.1 \text{ Hz, 1H, Ar), 7.46 (overlapping, 2H, Ar), 7.29 (overlapping, 3H, Ar), 6.97 (t, } J = 7.3 \text{ Hz, 1H, Ar), 4.92 (s, 2H, CH}_{2}\text{).} \\
^{13}C \text{ NMR} & \quad 101 \text{ MHz (DMSO-d}_{6}\text{):} \delta 140.1 \text{ (s, CO), 128.4, 121.4, 121.2, 121.1, 119.5, 117.7, 69.3 (s, CH}_{2}\text{).} \\
\text{MS: ESI: m/z 269.1 [M+H]^+}
\end{align*}\]
1-benzyl-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

White solid.

Yield: 41 %.

Rf: 0.48 (ethyl acetate).

1H NMR 400 MHz (DMSO-d$_6$): δ 9.13 (s, 1H, OH), 8.56 (s, 1H, NH), 7.78 (d, J = 1.7 Hz, 1H, NH), 7.49 (dd, $J^1 = 2.1$ Hz, $J^2 = 8.2$ Hz, 1H, ArH), 7.35-7.30 (overlapping, 4H, ArH), 7.26-7.24 (overlapping, 2H, ArH), 6.60 (t, $J = 5.9$ Hz, 1H, ArH), 4.90 (s, 2H, CH$_2$), 4.31 (d, $J = 5.9$ Hz, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 140.0 (s, CO), 127.9, 126.8, 126.3, 121.0, 120.7, 119.0, 69.2 (s, CH$_2$), 42.4 (s, CH$_2$).

MS: ESI: m/z 283.1 [M+H]$^+$.

1-(furan-2-ylmethyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

Pale brown solid.

Yield: 28 %.
Rf: 0.69 (ethyl acetate).

M.p. 270 °C.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.12 (s, 1H, OH), 8.50 (s, 1H, NH), 7.74 (s, 1H, NH), 7.58 (s, 1H, ArH), 7.48 (d, J = 8.3 Hz, 1H, ArH), 7.26 (d, J = 8.1 Hz, 1H, ArH), 6.51 (m, 1H, ArH), 6.39 (s, 1H, ArH), 6.26 (d, J = 2.3 Hz, 1H, ArH), 4.89 (s, 2H, CH$_2$), 4.29 (d, J = 5.3 Hz, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 141.6 (s, CO), 121.0, 120.7, 119.0, 110.1, 106.1, 69.2 (s, CH$_2$), 35.7 (s, CH$_2$).

![Image of the compound 26d]

1-(3-acetylphenyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

White solid.

Yield: 23 %.

Rf: 0.60 (ethyl acetate : petroleum ether = 9:1).

M.p. 235 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.19 (s, 1H, OH), 8.9 (s, 1H, NH), 8.73 (s, 1H, NH), 8.10 (d, J = 1.7 Hz, 1H, ArH), 7.86 (d, J = 0.5 Hz, 1H, ArH), 7.66 (d, J = 6.2 Hz, 1H, ArH), 7.57 (d, J = 6.2 Hz, 1H, ArH), 7.50 (d, J = 6.3 Hz, 1H, ArH), 7.43 (m, 1H, ArH), 7.33 (m, 1H, ArH), 4.93 (s, 2H, CH$_2$), 2.55 (s, 3H, CH$_3$).
154

\[^{13}C \text{ NMR 101 MHz (DMSO-d}_6\):} \delta 140.0 \text{ (s, CO), 128.8, 122.3, 121.5, 121.3, 119.7, 116.9, 69.3 (s, CH}_2, 26.4 \text{ (s, CH}_3).}

MS: ESI: m/z 311.1 [M+H]^+.

\[
\text{C NMR 101 MHz (DMSO-d}_6\):} \delta 140.0 \text{ (s, CO), 128.8, 122.3, 121.5, 121.3, 119.7, 116.9, 69.3 (s, CH}_2, 26.4 \text{ (s, CH}_3).}
\]

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(2-methoxy-4-methylphenyl)urea

Pale yellow solid.

Yield: 23%.

Rf: 0.85 (ethyl acetate).

M.p. 263 °C dec.

\[^{1}H \text{ NMR 400 MHz (DMSO-d}_6\):} \delta 9.31 \text{ (s, 1H, OH), 9.16 (s, 1H, NH), 8.16 (s, 1H, NH), 8.00 (s, 1H, Ar), 7.86 (s, 1H, Ar), 7.51 (d, J = 8.0 Hz, 1H, ArH), 7.31 (d, J = 8.0 Hz, 1H, ArH), 6.88 (d, J = 8.1 Hz, 1H, ArH), 6.73 (d, J = 7.4 Hz, 1H, ArH), 4.92 (s, 2H, CH}_2, 3.83 (s, 3H, CH}_3, 2.22 (s, 3H, CH}_3).}
\]

\[^{13}C \text{ NMR 101 MHz (DMSO-d}_6\):} \delta \text{ (s, CO), 121.4, 121.2, 120.8, 119.2, 118.6, 110.2, 69.3 (s, CH}_2, 55.5 (s, CH}_3, 20.4 \text{ (s, CH}_3).}
\]

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(4-(trifluoromethyl)pheny)urea

Pale yellow solid.

Yield: 20%.

Rf: 0.63 (ethyl acetate).

M.p. 269-270 °C dec.

$\text{H NMR } 400 \text{ MHz (DMSO-d}_6): \delta 9.19 (s, 1H, OH), 9.08 (s, 1H, NH), 8.82 (s, 1H, NH), 7.84 (d, J = 0.9 Hz, 1H, ArH), 7.65-7.64 (overlapping, 3H, Ar), 7.53 (dd, J1 = 8.4 Hz, J2 = 1.9 Hz, 1H, Ar), 7.33 (d, J = 8.2 Hz, 1H, Ar), 4.93 (s, 2H, CH$_2$).

$\text{C NMR } 101 \text{ MHz (DMSO-d}_6): \delta 140.3 (s, CO), 125.7, 125.7, 121.4, 121.3, 119.8, 117.4, 69.3 (s, CH$_2$).

MS: ESI: m/z 337.1 [M+H]$^+$.

1-(4-chlorophenyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

Pale yellow solid.
Yield: 46 %.

Rf: 0.66 (ethyl acetate : petroleum ether = 9:1).

M.p. 278 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.16 (s, 1H, OH), 8.78 (s, 1H, NH), 8.70 (s, 1H, NH), 7.81 (s, 1H, ArH), 7.53-7.48 (overlapping, 3H, ArH), 7.32 (overlapping, 3H, ArH), 4.93 (s, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 140.1 (s, CO), 128.2, 121.3, 121.2, 119.7, 119.3, 69.3 (s, CH$_2$).

MS: ESI: m/z 303.1 [M+H]$^+$.

\[
\begin{array}{c}
\text{Cl} \quad \text{H} \quad \text{N} \quad \text{N} \\
\text{O} \quad \text{B} \quad \text{OH}
\end{array}
\]

1-(4-chloro-2-methylphenyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

White solid.

Yield: 30 %.

Rf: 0.45 (ethyl acetate).

M.p. 250-252 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.18 (s, 1H, OH), 9.08 (s, 1H, NH), 7.98 (s, 1H, NH), 7.91 (d, $J = 8.7$ Hz, 1H, ArH), 7.84 (d, $J = 1.7$ Hz, 1H, ArH), 7.53 (dd, $J^1 = 8.2$ Hz, $J^2 = 2.0$ Hz, 1H, ArH), 7.32 (d, $J = 8.2$ Hz, 1H, ArH), 7.26 (d, $J = 2.2$ Hz, 1H, ArH).
Hz, 1H, ArH), 7.20 (dd, $J^1 = 8.7$ Hz, $J^2 = 2.4$ Hz, 1H, ArH), 4.93 (s, 2H, CH₂), 2.25 (s, 3H).

13C NMR 101 MHz (DMSO-d₆): δ 140.3 (s, CO), 129.5, 125.8, 122.6, 121.9, 121.6, 121.3, 119.7, 69.6 (s, CH₂), 17.6 (s, CH₃).

MS: ESI: m/z 317.1 [M+H]⁺

1-(4-fluorophenyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)urea

Pale yellow solid.

Yield: 42 %.

Rf: 0.48 (ethylAcetate).

M.p. 260 °C.

1H NMR 400 MHz (DMSO-d₆): δ 9.17 (bs, 1H, OH), 8.68 (s, 1H, NH), 8.67 (s, 1H, NH), 7.82 (d, $J = 1.8$ Hz, 1H, Ar), 7.53 (dd, $J^1 = 8.2$ Hz, $J^2 = 2.0$ Hz, 1H, Ar), 7.48-7.44 (overlapping, 2H, Ar), 7.32 (d, $J = 8.2$ Hz, 1H, Ar), 7.14-7.09 (overlapping, 2H, Ar), 4.93 (s, 2H, CH₂).

13C NMR 101 MHz (DMSO-d₆): δ 140.5 (s, CO), 121.2, 119.6, 119.5, 119.4, 115.0, 114.8, 69.3 (s, CH₂).

MS: ESI: m/z 287.1 [M+H]⁺
1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(2,4,6-trichlorophenyl)urea

White solid.

Yield: 42 %.

Rf: 0.71 (ethylAcetate).

M.p. 267 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.18 (s, 1H, OH), 8.99 (s, 1H, NH), 8.24 (s, 1H, NH), 7.81 (d, J = 1.7 Hz, 1H, ArH), 7.75 (s, 2H, ArH), 7.51 (dd, J = 8.2 Hz, J^2 = 2.0 Hz, ArH), 7.31 (d, J = 8.2 Hz, 1H, ArH), 4.92 (s, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ (s, CO), 127.8, 121.2, 121.1, 119.7, 69.3 (s, CH$_2$).

MS: ESI: m/z 372.9 [M+H]$^+$

General procedure for the synthesis of N,N’-disubstituted thioureas 28a-j:

6-amino benzoaborole 24 (0.67 mmol, 1 equiv.) was dissolved in acetone (1.5 mL) and the solution was stirred at room temperature. Then the opportune isothiocyanate (0.80 mmol, 1.2 equiv.) was added dropwise (or in portion). The solution was refluxed for about 2-6 hours and the progress of reaction was monitored by TLC (ethyl acetate). Then the solvent was
evaporated under reduced pressure, and the crude solid was washed with petroleum ether and n-pentane to afford the desired product as a pale yellow solid.

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(4-methoxy phenyl)thiourea

White solid.

Yield: 25 %.

Rf: 0.46 (dichloromethane : methanol = 96:4).

M.p. 169-170 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.71 (s, 1H, OH), 9.66 (s, 1H, NH), 9.23 (s, 1H, NH), 7.74 (s, 1H, ArH), 7.50 (d, $J = 7.2$ Hz, 1H, ArH), 7.35 (t, $J = 7.2$ Hz, 3H, ArH), 7.13 (d, $J = 7.4$ Hz, 2H, ArH), 4.96 (s, 2H, CH$_2$), 2.27 (s, 3H, CH$_3$).

13C NMR 101 MHz (DMSO-d$_6$): δ 183.8, 126.7, 125.4, 125.4, 120.8, 113.2, 69.4, 54.9.

MS: ESI: m/z 315.1 [M+H]$^+$
Pale yellow solid.

Yield: 45 %.

Rf: 0.33 (dichloromethane : methanol = 94:6).

M.p. 164-165 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.83 (s, 1H, OH), 9.72 (s, 1H, NH), 9.23 (s, 1H, NH), 7.74 (d, J = 1.6, 1H, ArH), 7.51-7.45 (overlapping, 4H, ArH), 7.38 (d, J = 8.2, 1H, ArH), 7.19-7.14 (overlapping, 2H, ArH), 4.96 (s, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 184.2, 140.7, 127.0, 125.9, 125.9, 125.7, 121.1, 114.8, 114.6, 99.2, 69.4.

MS: ESI: m/z 286.1 [M+H]$^+$

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-phenetylthiourea

Pale yellow solid.

Yield: 20 %.

Rf: 0.48 (dichloromethane : methanol = 94:6).

1H NMR 400 MHz (DMSO-d$_6$): δ 9.55 (bs, 1H, OH), 9.22 (s, 1H, NH), 7.64 (s, 1H, NH), 7.37-7.33 (overlapping, 5H, ArH), 7.31-7.19 (overlapping, 3H, ArH), 4.96 (s, 2H, CH$_2$), 3.68 (bs, 2H, CH$_2$), 2.86 (t, J = 7.7, 2H, CH$_2$).
13C NMR 101 MHz (DMSO-d6): δ 184.6, 128.3, 128.0, 125.8, 69.4 (s, CH2), 45.1 (s, CH2), 34.2 (s, CH2).

MS: ESI: m/z 313.1 [M+H]+.

1-(4-fluorophenyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)thiourea

Pale yellow solid.

Yield: 25 %.

Rf: 0.44 (dichloromethane : methanol = 94:6).

M.p. 172 °C dec.

1H NMR 400 MHz (DMSO-d6): δ 9.81 (s, 1H, OH), 9.70 (s, 1H, NH), 9.2 (s, 1H, NH), 7.74 (d, J = 1.6 Hz, 1H, ArH), 7.47 (overlapping, 3H, ArH), 7.38 (d, J = 8.1 Hz, 1H, ArH), 7.16 (t, J = 8.8 Hz, 2H, ArH), 4.96 (s, 2H, CH2).

13C NMR 101 MHz (DMSO-d6): δ 184.0 (s, CS), 140.7, 127.0, 125.9, 125.9, 125.7, 121.4, 114.8, 114.6, 99.2, 69.4 (s, CH2).

MS: ESI: m/z 303.1 [M+H]+.
1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(naphthalene-1-yl)thiourea

White solid.

Yield: 28 %.

Rf: 0.53 (dichloromethane : methanol = 94:6).

M.p. 172-173 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 9.84 (bs, 1H, OH), 9.72 (s, 1H, NH), 9.21 (s, 1H, NH), 7.99-7.95 (overlapping, 2H, ArH), 7.86 (t, $J = 4.8$, 1H, ArH), 7.78 (d, $J = 1.4$, 1H, ArH), 7.58-7.52 (overlapping, 5H, ArH), 7.36 (d, $J = 8.2$, 1H, ArH), 4.96 (s, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 184.6, 140.9, 127.8, 127.5, 126.5, 126.4, 125.8, 125.7, 125.3, 125.1, 122.8, 120.9, 69.4

MS: ESI: m/z 335.1 [M+H]$^+$.

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(4-trifluoromethyl)phenylthiourea

White solid.

Yield: 40 %.

Rf: 0.46 (dichloromethane : methanol = 94:6).
M.p. 179 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 10.09 (s, 1H, OH), 10.08 (s, 1H, NH), 9.24 (s, 1H, NH), 7.76 (d, J = 7.4 Hz, 3H, ArH), 7.68 (d, J = 8.1 Hz, 2H, ArH), 7.52 (dd, $J^1 = 7.8$ Hz, $J^2 = 1.3$ Hz, 1H, ArH), 7.39 (d, J = 8.1 Hz, 1H, ArH), 4.97 (s, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 183.3, 140.7, 126.9, 125.9, 125.8, 125.7, 121.1, 114.7, 114.5, 99.2, 69.4.

MS: ESI: m/z 353.1 [M+H]$^+$.

Yellow solid.

Yield: 25 %.

Rf: 0.63 (dichloromethane : methanol = 94:6).

M.p. 166 °C dec.

1H NMR 400 MHz (DMSO-d$_6$): δ 10.39 (s, 1H, OH), 10.33 (s, 1H, NH), 9.26 (s, 1H, NH), 8.21 (d, J = 8.7, 2H, ArH), 7.84 (d, J = 8.7, 2H, ArH), 7.70-7.67 (s, 1H, ArH), 7.52 (d, J =7.5 Hz, 1H, ArH), 7.40 (d, J = 7.5 Hz,1H, ArH), 4.97 (s, 2H, CH$_2$).
13C NMR 101 MHz (DMSO-d6): δ 184.6, 140.9, 126.8, 125.6, 124.0, 121.3, 69.4.

MS: ESI: m/z 330.1 [M+H]+.

1-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-3-(p-tolyl)thiourea

White solid.

Yield: 24 %.

Rf: 0.30 (dichloromethane : methanol = 94:6).

M.p. 169-170 °C dec.

1H NMR 400 MHz (DMSO-d6): δ 9.71 (s, 1H, OH), 9.66 (s, 1H, NH), 9.23 (s, 1H, NH), 7.74 (s, 1H, ArH), 7.50 (d, J = 7.4, 1H, ArH), 7.36-7.33 (overlapping, 3H, ArH), 7.13 (d, J = 7.4, 2H, ArH), 4.96 (s, 2H, CH2), 3.68 (bs, 2H, CH2), 2.28 (s, 3H, CH3).

13C NMR 101 MHz (DMSO-d6): δ 184.6, 128.5, 126.9, 125.7, 123.6, 121.0, 69.4, 20.1.

MS: ESI: m/z 299.1 [M+H]+.

1-(furan-2-ylmethyl)-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)thiourea
Yellow solid.

Yield: 40%.

Rf: 0.47 (dichloromethane : methanol = 94:6).

M.p. 172 °C dec.

1H NMR 400 MHz (DMSO-d_6): δ 9.58 (s, 1H, OH), 9.22 (s, 1H, NH), 8.02 (d, J = 4.9 Hz, 1H, NH), 7.69 (d, J = 1.7, 1H, ArH), 7.60 (m, J = 8.7, 1H, ArH), 7.46 (dd, J = 8.1 Hz, J = 1.9 Hz, 1 H, ArH), 7.35 (d, J =8.2 Hz, 1H, ArH), 7.42 (m, 1H, ArH), 6.32 (dd, J^1 = 3.1 Hz, J^2 = 0.7 Hz, 1 H, ArH), 4.96 (s, 2H, CH$_2$), 4.70 (d, J = 5.2 Hz, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d_6): δ 183.4 (s, CS), 141.7, 140.15, 121.1, 120.8, 119.1, 110.1, 106.2, 69.3, 35.8 (s, CH$_2$).

MS: ESI: m/z 289.1 [M+H]$^+$.

![化合物28j](image)

1-benzyl-l-3-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)thiourea

White solid.

Yield: 40%.

Rf: 0.47 (dichloromethane : methanol = 94:6).

M.p. 172 °C dec.
1H NMR 400 MHz (DMSO-d$_6$): δ 9.61 (s, 1H, OH), 9.22 (s, 1H, NH), 8.11 (d, $J = 4.9$ Hz, 1H, NH), 7.71 (s, 1H, ArH), 7.48 (d, $J = 8.0$, 1H, ArH), 7.38-7.34 (overlapping, 5H, ArH), 7.25 (m, 1H, ArH), 4.97 (s, 2H, CH$_2$), 4.74 (d, $J = 4.8$ Hz, 2H, CH$_2$).

13C NMR 101 MHz (DMSO-d$_6$): δ 181.2 (s, CS), 150.2, 139.1, 137.9, 128.2, 127.4, 126.8, 121.6, 69.7 (s, CH$_2$), 47.2.

MS: ESI: m/z 299.1 [M+H]$^+$.

Co-Crystallization and X-ray data collection of hCA II-ligand complexes.

Co-crystals for each of two sulfonamides reported here (6a and 6b) with hCA II were obtained using the hanging drop vapor diffusion method as reported earlier.118 Drops of 10 μL (0.3 mM hCA II; 0.7 mM drug 1; 0.1 % DMSO; 0.8 M Sodium Citrate; 50 mM Tris-HCl; pH 8.0) were equilibrated against the precipitant solution (1.6 M sodium citrate; 50 mM Tris-HCl; pH 8.0) at room temperature (~20 ºC), for all the three compounds. Crystals were observed after 5 days. Based of visual selection a crystal of each of the CA II complexes were cryoprotected by quick immersion into 20% sucrose precipitant solution and flash-cooled by exposing to a gaseous stream of nitrogen at 100 K. The X-ray diffraction data was collected using an R-AXIS IV$^{++}$ image plate system on a Rigaku RU-H3R Cu rotating anode operating at 50 kV and 22 mA, using Osmic Varimax HR optics. The detector-crystal distance was set to 80 mm. The oscillation steps were 1° with a 5 min exposure per image. Indexing, integration, and scaling were performed using HKL2000.119
Structure determination of CA II drug complexes.

Starting phases were calculated from Protein Data Bank (PDB) entry 3KS3120 with waters removed. Refinement using Phenix package121 with 5% of the unique reflections selected randomly and excluded from the refinement data set for the purpose of R_{free} calculations122 was alternated with manual refitting of the model in Coot.123 The validity of the final model was assessed by PROCHECK.124 Complete refinement statistics and model quality are included in Table S1. Figures were made in PyMOL.125

Table S1 Crystallographic data refinement and model quality statistics.

<table>
<thead>
<tr>
<th>PDB accession codes</th>
<th>4DZ7 (Compound 5c)</th>
<th>4DZ9 (Compound 5h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-collection statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.5418</td>
<td>1.5418</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1$</td>
<td>$P2_1$</td>
</tr>
<tr>
<td>Unit-cell parameters (Å, °): a, b, c, β</td>
<td>42.3, 41.3, 72.0, 104.1</td>
<td>42.2, 41.3, 72.0, 104.1</td>
</tr>
<tr>
<td>Total theoretical reflections</td>
<td>39683</td>
<td>39669</td>
</tr>
<tr>
<td>Total measured reflections</td>
<td>38255</td>
<td>37765</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.0 – 1.5 (1.54 – 1.49)</td>
<td>50.0 – 1.5 (1.54 – 1.49)</td>
</tr>
<tr>
<td>R_{sym} (%)</td>
<td>7.0 (26.1)</td>
<td>4.6 (17.4)</td>
</tr>
</tbody>
</table>
CA inhibition studies.

An Applied Photophysics stopped-flow instrument has been used for assaying the CA catalysed CO$_2$ hydration activity. Phenol red (at a concentration of 0.2 mM) has been used as indicator, working at the

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
absorbance maximum of 557 nm, with 20 mM Hepes (pH 7.4) and 20 mM NaBF$_4$ (for maintaining constant the ionic strength), following the initial rates of the CA-catalyzed CO$_2$ hydration reaction for a period of 10-100 s. The CO$_2$ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5-10% of the reaction have been used for determining the initial velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitor (10 mM) were prepared in distilled-deionized water and dilutions up to 0.01 nM were done thereafter with distilled-deionized water. Inhibitor and enzyme solutions were preincubated together for 15 min at RT prior to assay, in order to allow for the formation of the E-I complex. The inhibition constants were obtained by non-linear least-squares methods using PRISM 3, whereas the kinetic parameters for the uninhibited enzymes from Lineweaver-Burk plots, as reported earlier, and represent the mean from at least three different determinations. All CAs were recombinant proteins obtained as reported earlier by these groups.

Cell culture.
Human neuroblastoma SH-SY5Y cells (American Type Culture Collection number CRL-2266) were cultured in Dulbecco’s Modified Eagle Medium F-12 (DMEM/F12) ground (Life Technologies, Carlsbad, CA, USA) in the presence of 10% fetal calf serum (Life Technologies) inactivated at 56 °C for 30 minutes. The cells are grown in an incubator at 37 °C in a humidified atmosphere containing 5% CO$_2$. Stable clones expressing CFP-DEVD-YFP
(Addgene company code 24537) were obtained by transfecting cells with LipofectAMINE LTX and PLUS reagent (Life Technologies) using 1.5 μg DNA/5–7×10⁵ cells according to the manufacturer’s protocol. The different SH-SY5Y clones were maintained under selection by 400 μg/mL of G418. Individual clones expressing antibiotic resistance were picked after 14 days of selection, moved into a 48-well plate, and maintained in selective medium until confluence growth. Different individual clones were analyzed for CFP-DEVD-YFP expression upon treatment with the caspase-3 activator staurosporine (1 μg/mL).

Assessment of cell viability.

The viability of control SH-SY5Y-CFP-DEVD-YFP cells was calculated after 72 hours through an MTS assay with and without overnight treatment of cell with CoCl₂. Cell viability was assessed by a colorimetric assay using the MTS assay (CellTiter 96 Aqueous One Solution Assay; Promega Corporation, Madison, WI, USA), according to the manufacturer’s instructions. Absorbance at 490 nm was measured in a multilabel counter (Victor X5; Perkin Elmer, Waltham, MA, USA).
References and notes

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

Robert Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari

15 (a) Li, Z.; Li, C.J. CuBr-catalyzed efficient alknylation of sp³ C-H bonds

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

*Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari*
174

36 Rothenberg, G.; Feldberg, L.; Wiener, H.; Sasson, Y. Copper-catalyzed homolytic and heterolytic benzylic and allylic oxidation using tert-butyl

48 Supuran C. T.; Scozzafava A. Carbonic anhydrases as targets for medicinal
Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

Gao, B. B.; Clermont, A.; Rook, S. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein

56 (a) Chang, X.; Zheng, Y.; and, Yang, Q. Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. *Arthritis Research & Therapy* **2012**, 14, 176. (b) Chang, X.; Han, J.; Zhao, Y.; Yan, X.; Sun, S.; and Cui, Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. *BMC Musculoskeletal Disorders* **2010**, 11, 279.

59 (a) Barreiro, E.; Hussain, S. N. A. Protein carbonylation in skeletal muscles:

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari
Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

77 Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo vadis, virtual

7317–7322.

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo

Università di Sassari

103 Data not published.

107 Sawant, D.N.; Wagh, Y.S.; Bhatte, K.D.; Bhanage, B.M. Palladium-Catalyzed

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors
Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

Roberta Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari

118 Pacchiano, F.; Aggarwal, M.; Avvaru, B.S.; Robbins, A.H.; Scozzafava, A.; McKenna, R.; Supuran, C.T. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb). 2010, 46, 8371-8373.

120 Avvaru, B. S.; Kim C. U.; Sippel K. H.; Gruner S. M.; Agbandje-McKenna M.; Silverman D. N.; McKenna R. A short, strong hydrogen bond in the active site of human carbonic anhydrase II. Biochemistry 2010, 49, 249-251

125 The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.

Robert Cadoni

Synthesis of amides from aldehydes and amines via C-H bond activation and discovery and development of novel and selective carbonic anhydrase inhibitors

Tesi di Dottorato in Scienze e Tecnologie Chimiche; XXVII ciclo
Università di Sassari
Chem. 1971, 246, 2561-2573.

Ringraziamenti

Desidero esprimere un sincero ringraziamento al Dott. Mario Sechi, Tutore di questo mio Dottorato, per i consigli, espressi sempre con grande competenza e rigore scientifico, e per l’aiuto e il sostegno che mi ha sempre offerto in ogni fase del lavoro sperimentale e durante la stesura di questa Tesi.

Ringrazio la Dott.ssa Lidia De Luca, Tutore della prima parte di questo importante percorso, per avermi dato la possibilità di svolgere una parte del Dottorato presso il suo Laboratorio, inserendomi nelle sue linee di ricerca che mi hanno stimolato per il tempo in cui me ne sono occupata.

Desidero anche ringraziare coloro che hanno contribuito alla realizzazione della presente tesi:

Il Dott. Pala, per avermi dedicato tempo prezioso, insegnandomi tecniche di lavoro che non conoscevo, e discutendo con me le problematiche attinenti ai vari progetti di ricerca per trovare risposte ai miei interrogativi.

Il Prof. Jean-Yves Winum dell’Institute des Biomoleculés Max Mousseron dell’Università di Montpellier II in Francia per avermi accolto nel suo laboratorio e avermi dato la possibilità di svolgere il periodo di soggiorno all’estero, dal quale è nata un’interessante collaborazione scientifica tra gruppi di ricerca;

Il Prof Claudiu Supuran e la Dott.ssa Daniel Vullo dell’Università di Firenze per i saggi enzimatici;

La Dott.ssa Dominga Rogolino dell’Università di Parma per gli esperimenti di spettroscopia di massa;

I Sig.ri Alessandro Dessì e Roberto Dallocchio per la loro disponibilità per i lavori di Molecular Modelling;

Il Dott. Ciro Iaccarino del Dipartimento di Scienze Biomediche dell’Università di Sassari per i saggi di citotossicità;
Il Prof. Robert McKenna dell’Università della Florida per gli esperimenti di cristallografia ai raggi X;

Un ringraziamento speciale va ai colleghi e amici che hanno speso parte del proprio tempo per leggere e discutere con me le bozze del lavoro.

Un ringraziamento anche a Irene e Simona, che mi hanno accolto a Montpellier, rendendosi parte di un’esperienza che non scorderò mai.

Ringrazio ancora i miei colleghi Manuel, Caterina L., Giammario, Silvia, Suvi, Salvatore e Caterina C. con i quali ho condiviso questi tre anni di dottorato. Con la vostra compagnia dalla mattina alla sera, dal pranzo alla cena, dal primo al dolce, dai caffè alle torte e gossip su Grey’s Anatomy, avete addolcito la pillola del Dottorato.

Esprimo infine il mio ringraziamento più sentito a Pietro, perché questo Dottorato ha assorbito tutte le mie energie e la mia mente per tutto il tempo, e chi ci ha rimesso più di tutti, è lui. Lo ringrazio quindi per la sua pazienza, per la comprensione, per la voglia di rendersi utile in ogni modo e ad ogni costo, per il suo incoraggiamento costante e disinteressato, per la sua stima e il suo apprezzamento.