13-valent pneumococcal vaccines have substantially reduced meningitis and septicaemia in children. Comprehensive disease surveillance with continued development and implementation of vaccines against additional pneumococcal serotypes and serogroup B meningococcal disease will be needed to further improve control of these serious bacterial infections.

Andrew Riordan
Alder Hey Children’s NHS Foundation Trust, Liverpool, L12 2AP, UK
Andrew.Riordan@alderhey.nhs.uk

I have edited an eLearning package sponsored by Novartis.


Is tuberculosis elimination a reality?

Multidrug-resistant (MDR) tuberculosis is a public health emergency and a challenging scenario for both patients and clinicians. In 2012, there were more than 450 000 incident cases and 170 000 deaths worldwide. Treatment of MDR tuberculosis is complex and expensive (€100 000 or more for drugs for one patient), especially its most severe, extensively drug-resistant forms. Treatment is long (at least 2 years), the drugs are toxic (specific expertise is needed to manage adverse reactions), and the outcomes are poor (with low success and high death rates).

New drugs will soon be available that will probably shorten and simplify treatment for MDR tuberculosis and increase effectiveness, and public health strategies have been developed to prevent the occurrence of drug resistance. The traditional approach of national tuberculosis programmes, focused on tuberculosis control (ie, rapid diagnosis and early, effective treatment of newly detected infectious cases), which was advocated by the WHO Stop TB Strategy, will soon be replaced by the post-2015 strategy focused on the concept of tuberculosis elimination (ie, fewer than one new sputum smear-positive tuberculosis case per 1 million population).

Whereas traditional contact tracing (eg, looking for the contacts of individuals with tuberculosis and MDR tuberculosis in progressive circles) recommends identification and treatment of latently infected individuals and additional tuberculosis cases, new approaches recommend genotypic identification of the causative strain, monitoring of the epidemic, and initiation of adequate measures to manage it.

One such approach is mycobacterial interspersed repetitive-unit-variable-number tandem repeat (MIRU-VNTR) strain typing. In The Lancet Infectious Diseases, Laura F Anderson and colleagues report an assessment of transmission of MDR tuberculosis in the UK between 2004 and 2007, using the 24-loci MIRU-VNTR method together with epidemiological data collected through the national surveillance system and an ad-hoc cluster investigation questionnaire. The scope was to identify the relative frequency of MDR tuberculosis cases transmitted nationwide. 204 patients were diagnosed with MDR tuberculosis in the study period of whom 189 (92.6%) had an MIRU-VNTR profile. 15% of these cases were clustered. Furthermore, Anderson and colleagues analysed the risk factors associated with MDR tuberculosis transmission: being born in the UK (odds ratio 4·81; 95% CI 2·03–11·36,
If we are to make tuberculosis elimination a reality, this UK experience needs to be followed up in other European Union countries. The implementation of molecular methods with increased sensitivity allows the bypassing of low discriminatory power associated with traditional contact tracing procedures, scaling up part of the European Union’s tuberculosis elimination package.9-14

Giovanni Sotgiu, *Giovanni Battista Migliori
Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari, Research, Medical Education and Professional Development Unit, AOU Sassari, Italy (GS); and WHO Collaborating Centre for TB and Lung Diseases, Fondazione S Maugeri, Care and Research Institute, Tradate 21049, Italy (GBM)
giovannibattista.migliori@fsm.it

We declare that we have no competing interests.

Copyright © Sotgiu et al. Open Access article distributed under the terms of CC BY-NC-ND.